
NEUROSYMBOLIC REPRESENTATIONS FOR LIFELONG LEARNING

by

Alper Ahmetoğlu

B.S., Computer Engineering, Boğaziçi University, 2017

M.S., Computer Engineering, Boğaziçi University, 2019

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2024

ii

NEUROSYMBOLIC REPRESENTATIONS FOR LIFELONG LEARNING

APPROVED BY:

Assoc. Prof. Emre Uğur

(Thesis Supervisor)

Prof. Erhan Öztop

(Thesis Co-supervisor)

Prof. Lale Akarun

Assist. Prof. İnci M. Baytaş

Prof. Esra Erdem

Prof. Sinan Kalkan

DATE OF APPROVAL: 23.01.2024

iii

to Çağla.

iv

ACKNOWLEDGEMENTS

Not everyone has two great advisors! I would like to thank Emre Uğur and Erhan

Öztop for their guidance and support throughout my PhD years. Thanks to them, I

got proactive roles in many aspects of research, which significantly reshaped me from

a simple student into a (hopefully) proper researcher. Thanks to them, I worked on a

subject that I am deeply interested in. Thanks to them, I now look at problems from

a wider perspective. Thanks to them, I have always looked forward to our discussion

sessions. Thanks to them, I got the opportunity to study in Japan. Thanks to them,

I connected with people. Thanks to them, ...

I would like to thank Arzucan Özgür, Esra Erdem, İnci Baytaş, Lale Akarun, and

Sinan Kalkan for accepting to be a part of my PhD journey through the qualification

exam, thesis progress, and defense. Their comments were always constructive and

helpful. I am also grateful to Justus Piater, Minoru Asada, and Yukie Nagai for

their comments and suggestions. Special thanks to Suzan Üsküdarlı, who was always

supportive and constructive.

I also thank Ahmet Tekden, Yiğit Yıldırım, Muhammet Hatipoğlu, Utku Türk,

and Tuluhan Akbulut for the joyful discussions.

I am grateful to my family and in-laws for their unconditional support. Not

everyone is lucky to have two families strongly supporting their research. Lastly, this

thesis would not be possible without my beloved Çağla, without her support, without

her guidance, and without her joy.

This thesis was partially supported by TUBITAK ARDEB 1001 (120E274), In-

ternational Joint Research Promotion Program, Osaka University, under the project

“Developmentally and biologically realistic modeling of perspective invariant action

understanding”, the Japan Society for the Promotion of Science, Grant-in-Aid for

v

Scientific Research (22H03670), the project JPNP16007 commissioned by the New En-

ergy and Industrial Technology Development Organization (NEDO), and JST, CREST

(JP-MJCR17A4). The numerical calculations reported in this thesis were partially

performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center

(TRUBA resources).

The images that emerged within the scope of this thesis study and whose copy-

rights were transferred to the copyright publisher were used in the thesis book in

accordance with the publisher’s policy on the reuse of the texts and graphics produced

by the author available on the publisher’s official website.

vi

ABSTRACT

NEUROSYMBOLIC REPRESENTATIONS FOR

LIFELONG LEARNING

This thesis presents a novel framework for robot learning that combines the

advantages of deep neural architectures in processing high-dimensional vectors with

classical AI search techniques to bridge the gap between continuous sensorimotor data

of the robot and domains consisting of finite entities. The aim is to convert informa-

tion about the environment collected through interactions into an appropriate symbolic

form on which a search tree can be built to reach a desired state. The framework con-

sists of an encoder-decoder type of network with binarized activations in the bottleneck

layer. The state of the environment, represented as a set of object features, is given to

the encoder as input. The output is a discrete vector, treated as the object’s symbol,

given to the decoder together with the action vector. The decoder predicts the effect

observed by the agent due to the executed action. Once the network is trained, we can

transform the continuously represented environment definition into symbolic vectors

using the encoder. This allows us to build rules defining the transitions in the environ-

ment defined over these symbols. These rules can be translated into planning domain

definition language (PDDL), allowing domain-independent off-the-shelf planners to be

used to search for a goal state. Our experiments on tabletop object manipulation

setups show that the system can learn appropriate symbols of the environment that

allow it to build object towers with desired heights and complex object structures that

require modeling the relations between objects by reasoning through the rules defined

over the symbols learned in an unsupervised manner. As the framework is built with

differentiable blocks, it affords appending recent advances in deep learning with ease,

allowing it to be extensible in multiple directions.

vii

ÖZET

HAYAT BOYU ÖĞRENME İÇİN NÖROSEMBOLİK

GÖSTERİMLER

Bu tez, derin sinir ağı mimarilerinin yüksek boyutlu vektörleri işlemedeki avan-

tajları ile klasik yapay zeka arama tekniklerini birleştirerek robot öğrenimi için yeni bir

yöntem sunmaktadır. Bu yöntem, robotun sürekli gösterimdeki duyudevinimsel verileri

ile sonlu sayıda nesneler içeren ortamlar arasında bir köprü kurmak için tasarlanmıştır.

Önerilen yöntemin amacı ortam ile etkileşimler yoluyla toplanan verileri uygun sem-

bolik yapılara çevirerek bu semboller üzerinden ağaç arama yöntemleri ile istenilen

bir hedef durumu bulmaktır. Yöntemin genel yapısında gizyazıcı-gizçözücü tipinde bir

sinir ağı bulunmaktadır. Sinir ağının darboğaz katmanında türev akışına izin veren i-

kili etkinleştirme hücreleri bulunmaktadır. Ortamdaki nesnelerin öznitelikleri ile temsil

edilen ortam durumu, gizyazıcıya girdi olarak verilmektedir. Gizyazıcı her nesne için

ayrık bir vektör üretir, ve bu vektörler nesnelerin sembolleri olarak kullanılır. Nesne

sembolleri eylem vektörü ile birlikte gizçözücüye girdi olarak verilir, ve gizçözücü robo-

tun eyleminin yol açtığı etkiyi tahmin eder. Tüm yapı eğitildikten sonra sürekli bir

şekilde gösterilen ortamın tanımı gizyazıcı kullanılarak sembolik hale dönüştürülebilir.

Bu sayede ortamdaki geçişler semboller üzerinden kurallar tanımlanarak gösterilebilir.

Bu kurallar planlama alan tanım diline çevrildiğinde çeşitli planlama yöntemleri kul-

lanılarak hedef bir durum aranabilir. Masaüstü nesne etkileşimi deney düzeneklerinde

yaptığımız deneyler bu sistemin ortama dair uygun semboller öğrendiğini göstermiştir.

Gözetimsiz bir şekilde öğrenilmiş bu semboller üzerinden tanımlanan kurallar kul-

lanılarak çeşitli yüksekliklerde nesne kuleleri ve nesneler arası ilişkilerin modellenmesini

gerektiren karmaşık nesne yapıları kurulmuştur. Bu yöntem türevlenebilir yapı taşları

ile kurulduğu için derin öğrenmedeki yenilikler ile çeşitli yönlerde genişletilebilir.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

ÖZET . vii

LIST OF FIGURES . xii

LIST OF TABLES . xvi

LIST OF SYMBOLS . xviii

LIST OF ACRONYMS/ABBREVIATIONS . xix

1. INTRODUCTION . 1

2. RELATED WORK . 10

3. HIGH-LEVEL FEATURES FOR RESOURCE ECONOMY 13

3.1. Introduction . 13

3.2. Methods . 14

3.3. Experiment Setup . 19

3.4. Results . 21

3.4.1. Transfer Performance . 21

3.4.2. Correlation with High-Level Task Properties 27

3.4.3. Visualizing Features . 29

3.4.4. Computation Time of Slow Features 32

3.5. Conclusion . 32

4. DEEPSYM: DEEP SYMBOL GENERATION 34

4.1. Introduction . 34

4.2. Problem Formulation . 35

4.3. Methods . 37

4.3.1. Exploration with the Environment 38

4.3.2. Symbol Discovery with Deep Networks 40

4.3.3. Extracting Symbolic Rules . 42

4.4. Robot Experiments . 43

4.4.1. Experiment Setup . 44

ix

4.4.1.1. Interactions . 44

4.4.1.2. Perception . 44

4.4.1.3. Encoder-decoder network 44

4.4.2. Discovered Object Categories 45

4.4.3. Discovered Relational Categories 47

4.4.4. Discovered Effect Categories . 49

4.4.5. Learned Rules and PPDDL Operators 51

4.4.6. Performance of Planning . 54

4.4.6.1. DeepSym vs. OCEC 55

4.4.6.2. DeepSym Performance 55

4.4.6.3. Deterministic vs. Probabilistic Planning 56

4.5. Experiments on 8-puzzle . 57

4.5.1. Learned Symbols . 59

4.5.2. Learned Rules . 61

4.5.3. Planning Examples . 62

4.5.4. Scaling-up to 15-puzzle . 64

4.5.5. Comparison with Autoencoder 66

4.6. Discussion . 66

4.7. Conclusion . 68

5. ATTENTIVE DEEP EFFECT PREDICTORS 70

5.1. Introduction . 70

5.2. Methods . 70

5.3. Experiments . 73

5.3.1. Experiment Setup . 73

5.3.2. Effect Prediction . 75

5.3.3. Learned symbols . 77

5.3.4. Planning with Discovered Symbols 78

5.4. Conclusion . 80

6. DISCOVERING RELATIONAL OBJECT SYMBOLS 82

6.1. Introduction . 82

6.2. Problem Definition . 83

x

6.3. Methods . 85

6.3.1. Relational DeepSym . 85

6.3.2. Comparison with Related Models 87

6.4. Experiments . 88

6.4.1. Experiment Setup . 88

6.4.1.1. Environment . 88

6.4.1.2. Data Collection . 88

6.4.1.3. Baselines . 89

6.4.1.4. Training Details . 90

6.4.2. Effect Prediction Results . 90

6.4.3. Action Sequence Prediction . 93

6.4.4. Comparing Different Activations for Relations 94

6.5. Conclusion . 95

7. LEARNING SYMBOLIC SKILLS FROM PARAMETERIZED ACTIONS . 96

7.1. Introduction . 96

7.2. Problem Definition . 96

7.3. Methods . 97

7.3.1. Learning Object and Action Symbols 97

7.3.2. Extracting Skills from Action Symbols 100

7.4. Experiments . 100

7.4.1. Experiment Setup . 100

7.4.2. Learned Action Parameterizations 102

7.5. Conclusion . 103

8. PLANNING WITH OBJECT AND RELATIONAL PREDICATES 105

8.1. Introduction . 105

8.2. Problem Definition . 105

8.3. Methods . 106

8.3.1. Learning Unary and Relational Symbols 106

8.3.1.1. Encoder Network . 107

8.3.1.2. Self-Attention Network 107

8.3.1.3. Aggregation Function 108

xi

8.3.1.4. Decoder Network . 109

8.3.2. Learning Operators . 109

8.3.3. Translating Operators to PDDL 111

8.4. Experiments . 112

8.4.1. Experiment Setup . 112

8.4.2. Effect Prediction Results . 114

8.4.3. Planning Performance . 114

8.5. Discussion . 117

8.6. Conclusion . 117

9. DISCUSSION . 118

10. CONCLUSION . 122

REFERENCES . 123

APPENDIX A: DEEPSYM EXTENDED RESULTS 141

A.1. Network Architecture and Hyperparameters 141

A.1.1. Tabletop Environment . 141

A.1.2. MNIST 8-puzzle Environment 143

A.2. Using the Straight-Through Estimator 144

A.3. The Number of States in 8-puzzle w/r and 15-puzzle w/r 145

A.4. Generated Plans in DeepSym . 146

A.5. Symbols Learned in 8-puzzle w/r and 15-puzzle w/r 147

xii

LIST OF FIGURES

Figure 1.1. The general outline of the proposed framework. 5

Figure 3.1. The general outline of the transfer method with slow features. . . 15

Figure 3.2. Different transfer methods are depicted. 17

Figure 3.3. The input from the camera is shown on the top-right inset. 18

Figure 3.4. The transfer network architecture for the transfer:sfa method. . 20

Figure 3.5. The generalization performance. 22

Figure 3.6. Test performance with the L-shaped obstacle. 24

Figure 3.7. Test performance with two rectangular obstacles. 25

Figure 3.8. Units sorted by their correlation with high-level features. 26

Figure 3.9. Units are sorted by their correlation for joints. 27

Figure 3.10. The first 20 SFA and PCA units’ responses to tip positions. 29

Figure 3.11. The first 20 SFA and PCA units’ responses to the relative goal. . . 30

Figure 3.12. The first 20 SFA and PCA units’ responses to the obstacle. 30

Figure 3.13. Neurons that correlate the most with the goal and obstacle. 31

xiii

Figure 4.1. General system overview of rule generation and refinement. 37

Figure 4.2. The tabletop experiment setup with UR10. 39

Figure 4.3. Network architectures for single and paired interactions. 41

Figure 4.4. Example depth images as inputs to the encoder network f1. 45

Figure 4.5. The encoder f2 activations for paired objects. 48

Figure 4.6. The effect space for the single object interactions. 50

Figure 4.7. Effect space for the paired object interactions. 51

Figure 4.8. An example expansion of the decision tree. 53

Figure 4.9. Planning examples. 54

Figure 4.10. Two steps of the MNIST 8-puzzle. 58

Figure 4.11. The effect is represented as the difference between two timesteps. . 58

Figure 4.12. Average states of the top 30 symbols on MNIST 8-puzzle. 60

Figure 4.13. Example effect predictions in MNIST 8-Tile. 60

Figure 4.14. An example PPDDL rule generated from a decision path. 61

Figure 4.15. The generated plan for the goal state. 62

Figure 4.16. Three different goal positions and with planner outputs. 63

xiv

Figure 4.17. Example configurations for puzzles with replacement. 64

Figure 4.18. Planning results for 8-puzzle w/r and 15-puzzle w/r. 65

Figure 5.1. Attentive DeepSym architecture. 71

Figure 5.2. The experiment setup. 72

Figure 5.3. Effect prediction for different states. 74

Figure 5.4. The average depth images for each symbol. 77

Figure 5.5. Example images that activate the symbol ‘00011011’. 78

Figure 5.6. Symbolic forward module. 79

Figure 5.7. An example plan for an arbitrary goal state. 80

Figure 6.1. The proposed model is shown in the top panel. 84

Figure 6.2. An example interaction with the environment. 89

Figure 6.3. Prediction errors vs. the sample size and attention heads. 91

Figure 6.4. Action sequence prediction results for different models. 92

Figure 6.5. Prediction errors vs. the number of actions. 93

Figure 7.1. The outline of the architecture for learning skills. 98

Figure 7.2. Extract parameterizations from the action encoder. 99

xv

Figure 7.3. An example parameterized action. 101

Figure 7.4. Three example learned parameterized actions. 102

Figure 7.5. The evolution of the environment through time. 103

Figure 8.1. An overview of the proposed method. 107

Figure 8.2. An example generated PDDL action schema. 111

Figure 8.3. Effect prediction errors for different numbers of actions. 113

Figure 8.4. The planning performance for different numbers of objects. 115

Figure 8.5. Generated action sequence in the real world. 116

Figure 8.6. An example plan when there are more objects than training. . . . 116

Figure A.1. The mean square error losses for f1-g1 and f2-g2 network pairs. . . 143

Figure A.2. Plan executions for (H4S4) and (H3S4). 146

Figure A.3. Average states of symbols learned in 8-puzzle w/r. 147

Figure A.4. Average states of symbols learned in 15-puzzle w/r. 147

Figure A.5. Average states of autoencoder symbols learned in 8-puzzle. 147

Figure A.6. Average states of autoencoder symbols learned in 8-puzzle w/r. . . 148

Figure A.7. Average states of autoencoder symbols learned in 15-puzzle w/r. . 148

xvi

LIST OF TABLES

Table 3.1. Units that correlate the maximum with high-level features. 28

Table 4.1. The relative assignment frequencies of objects symbols. 46

Table 4.2. Planning results from random 20 configurations. 55

Table 4.3. Planning results from 25 executions for each task. 57

Table 4.4. The average percentage of successful plans. 63

Table 5.1. Effect predictions for example cases in Figure 5.3. 76

Table 6.1. Effect prediction results averaged over five runs. 90

Table 6.2. Effect prediction results with different activation functions. 94

Table 8.1. Effect prediction results averaged over three runs. 114

Table A.1. Encoder f1. 141

Table A.2. Encoder f2. 142

Table A.3. Decoder g1. 142

Table A.4. Decoder g2. 142

Table A.5. The encoder for the 8-puzzle environment. 144

xvii

Table A.6. The decoder for the 8-puzzle environment. 144

Table A.7. The assignment frequencies with the straight-through estimator. . 145

xviii

LIST OF SYMBOLS

A Action set

Bd Set of d-dimensional binary vectors

E Expectation

Rd Set of d-dimensional real numbers

x Real-valued vector

z Discrete-valued (symbolic) vector

Z Set of symbolic vectors

δ Cartesian difference

∆ Difference operator

σ A binary function

Σ A set of binary functions

ϕ Symbolic operator

Φ Set of symbolic operators

∥.∥2 Euclidean norm

xix

LIST OF ACRONYMS/ABBREVIATIONS

2D 2-dimensional

AI Artificial Intelligence

ASP Answer Set Programming

CNN Convolutional Neural Network

DCGAN Deep Convolutional Generative Adversarial Network

DNN Deep Neural Network

DQN Deep Q-Network

GS Gumbel-Sigmoid

IID Independently and Identically Distributed

LLM Large Language Model

MLP Multi-Layer Perceptron

MSE Mean-Squared Error

OBO Object-Binary-Object

OCEC Object-Continuous-Effect and Clustering

PCA Principal Component Analysis

PDDL Planning Domain Definition Language

PPDDL Probabilistic Planning Domain Definition Language

ReLU Rectified Linear Unit

RGB Red Green Blue

RL Reinforcement Learning

SFA Slow Feature Analysis

SGD Stochastic Gradient Descent

SVM Support Vector Machine

1

1. INTRODUCTION

The ultimate aim of artificial intelligence (AI) research is to create an agent that

perceives its environment through its sensors and acts on it to solve a desired task

with little or no human intervention. As the definition of a task might not be available

a priori, or can change over time, an intelligent agent must have a method to learn

the necessary abstractions to be able to carry out a given task. Therefore, learning

appropriate abstractions for the task at hand has been a well-studied topic in AI.

The trending methodology in the last decade for learning abstractions for a spe-

cific task is optimizing the parameters of a differentiable function, such as a deep neural

network (DNN), with variants of stochastic gradient descent (SGD). While the foun-

dations of this strategy go well before the last decade, advances in the initialization

techniques [1–4], adaptive optimization methods [5–7], normalization methods [8–10],

and dedicated hardware for fast matrix multiplication combined with the availability

of large data sets [11, 12] resulted in a step change in the performance in many do-

mains including object detection [13–16], object segmentation [17–19], machine trans-

lation [20,21], and game playing [22–25].

Even more recently, the introduction of the transformer architecture [26], a deep

neural network with a self-attention module for modeling the interactions between

input parts, enabled the training of very large DNNs [21], [27–33], with parameter

sizes in billions, on internet-scale text data sets. These large networks, trained with

the simple objective of predicting the next token given previous ones, called large

language models (LLMs), can solve not only a single task but many tasks that are

defined in natural language. LLMs showcased that a foundational model [34] trained

on a very large data set with a generic objective can be fine-tuned to solve different

downstream tasks, which shifted the current paradigm on solving the general problem

of AI into training large networks with large data sets. The main motivation is that

if we can learn generic distributed representations—multiple units responsible for the

2

response to an input—that summarize the training data so well, then we can use them

in many scenarios instead of learning an abstraction for each problem separately.

Even with billions of connections and internet-scale data sets, these models can

perform poorly on simple questions that require several steps of reasoning [35]. It can

be argued that this is caused by two fundamental problems: (1) neither the network

architecture nor the training schema has an inductive bias toward any kind of abstract

reasoning, and (2) the model, without any embodiment, is not trained in the real world

but on a reflection of it described by humans with human symbols. Of the two, the

latter is a serious problem as collecting a large data set of robot interactions in the

wild, in the same amplitude with internet-scale text data with camera image as input

and motor commands as output might not be feasible in the foreseeable future.

The current LLMs can be considered as instantiations of the Chinese Room Ar-

gument [36]—a thought experiment questioning whether an agent that has access to a

virtually infinite set of input-output pairs can be considered intelligent. Harnad argues

that a solution to the Chinese Room Argument is to learn the necessary symbols in

a grounded, bottom-up fashion where symbols bind to sensory data [37]. Harnad’s

proposal can be interpreted as a neurosymbolic solution in which connectionist models

are used as a tool to learn ‘iconic representations’ on which one can build higher-level

symbolic representations that can be used for reasoning.

On the other hand, in robot learning, the main challenge in training an agent

in the real world is not reasoning but rather perceiving the environment through data

received from sensors and translating it into an appropriate task space. Once we

convert sensorimotor data represented with continuous-valued vectors into symbolic

entities in the task space, the problem almost becomes trivial. From the example in

Konidaris [38], consider the task of teaching a robot how to play chess in the real world

with a physical chessboard and chess pieces. Once the robot recognizes the pieces,

converts them into symbols, and learns the transitions between these symbols (which

can be thought of as high-level actions or skills), even a simple tree search algorithm

3

such as A* with a simple heuristic would be sufficient to achieve the rating of a local

club player. It is the abstraction of the sensory data—the representational gap between

sensory data and task-level symbolic entities—that poses most of the challenge, and it

is a type of problem that the deep learning methodology excels at. This is one of the

core motivations that this thesis followed: combining deep architectures with classical

AI search techniques to create a general recipe for scalable robot learning.

What can be a generic training objective, like the next token prediction for the

text domain, to learn the necessary abstractions for a given task in robot learning in

a bottom-up manner? In Konidaris et al. [39], it is proven that given an agent with

a set of actions, it is necessary and sufficient to learn abstractions for pre- and post-

conditions (or effects) of actions to enable domain-independent planning using tree

search algorithms. Following the chess example, this would be equivalent to learning

the rules of chess from images taken from a top-down camera by using the interaction

data of the robot executing legal chess moves—or watching people playing chess. After

learning abstractions to represent the environment symbolically, the robot can arrive

at a desired board configuration by searching for the goal state in the symbolic space

with a tree search algorithm.

While learning abstractions for pre- and post-conditions of actions might be a

good strategy for robot learning as it equips the agent with a tool to predict what would

happen if an action is taken, it would be an incremental change from the Chinese Room

Argument if no assumption is made on the form of the learned abstractions. Some

works in the reinforcement learning literature propose to learn a model of the world—a

function that predicts the next state given the current state and the action—and use

this model to maximize a reward function [40, 41]. Even though these works learn

abstractions that allow us to predict the future, there is no clear evidence whether the

learned representations can be manipulated, as in Harnad’s proposal [37], to account

for novel situations. In other words, even though the representations learned with these

approaches are grounded in sensory data, they cannot be manipulated symbolically to

create new representations that account for new situations.

4

On the other hand, when we consider the tasks that humans do in their daily

lives, most of them consist of a finite number of entities, objects, and their relations

that together compose a scene, and actions we take manipulate only a subset of this

scene. For example, when we are making a cup of instant coffee, we open the cupboard,

take the coffee can and a cup, open the coffee can, put a scoop of coffee into the cup,

and pour down hot water from the kettle. It is, most of the time, object properties

and relations that change due to our actions. As a corollary, preconditions and effects

of actions that we take at each step depend only on a subset of objects—whether we

have a cup or not does not affect our ability to open the coffee can.

Following this observation, learning object-oriented and effect-based abstractions

[42–44] might be a reasonable and generic approach for robot learning, which can

also be regarded as learning affordances of objects—action possibilities that the object

offers to the agent. This definition essentially combines information from the features

of the object (i.e., preconditions), actions that the agent possesses, and the resulting

effect after executing the action on the object. The result is a clear objective: ‘which

actions can be applied to which objects, and what happens if applied,’ which has a

resemblance to the next token prediction in current LLMs. Representing objects by

their affordances enables immediate transfer capability to novel objects since the robot

can apply actions and observe their effects to assess the affordances of new objects

or use previously learned affordances while developing new skills [45, 46]. In a sense,

affordances provide a simple language defined by skills to represent objects.

A generally capable embodied agent that we target (e.g., consider an animal)

should be able to interact in different environments and novel situations. This asserts

that the learned representations should be adaptable—or transferrable—to new tasks to

minimize learning. Utilizing from previously acquired knowledge to solve a new task is

a well-studied topic in machine learning, commonly referred to as transfer learning [47],

meta-learning [48], or lifelong learning [49], each of which treats the same problem from

different perspectives. The lifelong learning problem of an embodied agent is essen-

tially different from transfer learning—in the context of machine learning—since the

5

agent, and therefore the actions that can be executed by the agent, is directly shared

between tasks. As such, learning a new skill to solve a specific task directly affects the

agent’s ability to solve other tasks and, in turn, to collect qualitatively different data to

learn new representations. For an agent that is operating in our everyday environments

(e.g., consider a cleaning robot in the living room), learning object-level affordances

creates a common substrate for different tasks as most of the tasks consider manipu-

lating objects in the environment. Affordances, that are action possibilities offered by

the environment to the agent, connect the agent’s capabilities with its surroundings.

This sets object-level, affordance-encoding, and symbolic representations as a good

candidate for lifelong learning.

Observation
x1

x2

x3

x4

x1

x4

x3

x2

Action

θ1

θ2
θ3o2

o3

o2

θ1

θ2

θ3

Effect

∆

∆x1

∆x2

∆x4

∆x3

State
Encoder

Action
Encoder

Effect
Decoder

object
symbols & relations

action
symbols

z3

z1

z4

p

z2

r42 r41

r23

r21

h1

h2

h3

h4

Rule 1:

if a == (0, 1) AND
 b == (0, 0) AND
 rab == False
 action == (act4 a)
then
 a := (0, 0)
 rab := True

Rule 2:
...

z1 z2

z3

p

(0, 1) (0, 0)

(1, 0)

z1 z2

z3

(0, 0) (0, 0)

(1, 0)

z1 z2

p(0, 0) (0, 1)
z1 z2

(0, 0)(0, 0)

(act4 o1)

(act4 o2)

precondition action postcondition
(:action act4_a_137
 :parameters (?a ?b)
 :precondition (and
 (z01 ?a) (z00 ?b)
 (not (r1 ?a ?b))
)
 :effect (and
 (not (z01 ?a)) (z00 ?a)
 (r1 ?a ?b)
)
)

(:action ...

transform to
discrete experience

abstraction
translate into

PDDL

generate plans and
collect new experience

Figure 1.1. The general outline of the proposed framework. The robot interacts with

the environment and collects state–action–effect tuples. These tuples are used to

train a neural network that learns object symbols and their relations with each other.

6

This thesis provides a new robot learning framework by combining three main

motivations: (1) learning object-level symbolic representations (2) that would encode

preconditions and effects of actions (3) with deep neural architectures that can be used

for domain-independent planning. The general outline of the approach is shown in Fig-

ure 1.1. The proposal is a general design strategy that can be adapted to different sit-

uations by modifying the neural architecture. Essentially, we build an encoder-decoder

network with discrete activations in the bottleneck layer (without breaking differentia-

bility) to learn object and action symbols that predict the effect of the executed action

in an end-to-end manner. After training these networks with the interaction data that

the robot randomly executes in the environment, we convert the continuously repre-

sented experience of the robot (i.e., state vectors) into discrete transitions from which

one can distill abstract rules about the environment. In the end, such abstract rules

allows using tree search methods to search for an action sequence that reaches a target

state.

The journey in this thesis starts off with a search for high-level, task-specific

units in a neural network trained to solve a task with a reinforcement learning (RL)

algorithm. The hypothesis is that if we can fish such units out with a simple method,

then we can build a lifelong learning pipeline by building on top of previously learned

(and selected) units. Given a neural network trained on a primary task with deep

Q-network (DQN) algorithm [22, 23], we applied principal component analysis (PCA)

for the minimum information loss, and slow feature analysis (SFA) for creating signals

that change slowly on top of the last layer activations of the network. We compared

units created by SFA and PCA with plain activations on a related but novel secondary

task. In this new task, we train a new network from scratch while using units from

SFA, PCA, or no transformation. Our results showed that units created by SFA are

the most successful for skill transfer. SFA, as well as PCA, incur fewer resources

compared to usual skill transfer where full layer outputs are used in the new task

learning, whereby many units formed show a localized response reflecting end-effector-

obstacle-goal relations in these tasks. This work, which is detailed in Chapter 3, is

published in Advanced Robotics [50].

7

Even though PCA and SFA transformations on top of the last layer outputs

provide task-specific activations, these are not very high-level abstractions that can

be used for planning and search. In the next study, we instead focused on building

an architecture with a constraint such that the learned abstractions are, by design,

discrete, symbolic representations. This work planted the seeds for the general archi-

tecture in Figure 1.1. Namely, we built an encoder-decoder network with a discrete

bottleneck layer that predicts the effect of the robot’s executed action. The encoder

takes the depth image of the object as input and outputs a binarized vector with

Gumbel-sigmoid function [51,52] for error backpropagation. These outputs, which can

be thought of as object symbols encoding affordances, are given to the decoder to-

gether with the action vector (which is assumed to be given in this work, i.e., there is

no action encoder) for the effect prediction. After training the network, we translate

the state–action–effect tuple into its discrete counterpart and train a decision tree with

the discrete data set. The motivation is to extract probabilistic rules from branches of

the tree that encode discrete state–action–effect tuples. Lastly, we convert these rules

into probabilistic planning domain definition language (probabilistic PDDL, PPDDL),

used by the planning community to represent domains in a standardized language and

show planning examples where the robot stacks cubes to build towers with a desired

height. This work, DeepSym, constitutes the basis of the thesis, detailed in Chapter

4, and is published in Journal of Artificial Intelligence Research [46].

Experiments in DeepSym consider acting on a single object with no other objects

in the environment. This is hardly the case in the real world, as objects are related

to each other, and an action applied to an object might affect other objects. Consider

a plate containing a fork and a knife. If the robot carries the plate to the kitchen,

the fork and the knife are also carried with it. As such, we need a modification on

the architecture to handle the effects of a varying number of objects. In this regard,

we proposed Attentive DeepSym [53] incorporating self-attention layers [26] to model

the relations of objects with each other. Here, the encoder takes a varying number

of objects as input (in the batch dimension) and produces object symbols. Combined

with the action vector (still fixed), these symbols propagate information to each other

8

via the self-attention module to produce multi-object representations that are used by

the decoder for effect prediction. As effects change with relations of objects (i.e., two

objects move together if one is on top of the other), these multi-object representations

implicitly hold relational information between objects. Attentive DeepSym [53], de-

tailed in Chapter 5, is presented at Signal Processing and Communications Applications

Conference 2023 with its Turkish translation [54].

Attentive DeepSym provided a way to learn relational information between ob-

jects. However, these relations remain implicit in the weights of the self-attention

module. In other words, even though the whole architecture can make accurate effect

predictions when objects are in relation with each other, it does not output—and we

do not have a simple way to extract—relations between objects, which makes it hard

to convert the state information into rules that domain-independent planners can rea-

son with. Following the previous example, the model does not output that there is

a relation between the plate and the fork, and while creating the rule set, we have

no way to determine whether, e.g., a cup on the table, should be included in the rule

when the robot is interacting with the plate. As our problem was not having access

to the learned relations, in Relational DeepSym [55], we explicitly output binary ob-

ject relations from input object features using a modified self-attention module with

Gumbel-sigmoid function, instead of softmax, as the attention activation. These binary

relation weights are then used to aggregate object symbols together with the action

vector to be given to the decoder for effect prediction. Now, this system does not

only output object symbols but also relations between objects from state–action–effect

tuple. This gives a more appropriate set of symbols to represent the current state

of the environment: object symbols and their relations with each other. Relational

DeepSym [55], detailed in Chapter 6, compares relational formulation with Attentive

DeepSym and Vanilla DeepSym in terms of effect prediction performance. This work

is accepted and will appear in IEEE Robotics and Automation Letters.

As previous chapters focus on learning object symbols and relations while using

pre-defined actions for interacting with the environment, in Chapter 7, we focus on

9

learning high-level skills from a continuously parameterized action space by extending

Relational DeepSym with an action encoder. We show that with this architectural

extension, high-level skills can be distilled from the action encoder after training. We

show an example of how these skills can be used in further stages of learning.

In DeepSym, rules are extracted from a decision tree trained on the symbolic

state–action–effect data. When there are multiple object symbols and relations that are

permutation invariant, training a decision tree becomes non-trivial as there is no fixed

dimension. As an alternative, in our next work, we build the rule set by partitioning

samples with the same abstract preconditions and actions, converting them into PDDL,

and generating plans that involve the affordances of an arbitrary number of objects

to achieve tasks. This work [56], detailed in Chapter 8, is submitted to International

Conference on Robotics and Automation 2024.

We go over the important aspects of the proposed methodology in Chapter 9,

discuss the initial assumptions that are addressed in this thesis, and provide promising

and feasible future directions that would increase the applicability of the method for

more generic scenarios. We give a summary and a conclusion of the thesis in Chapter

10.

Now, in the next chapter, we will go over the related works that study learn-

ing symbolic representations from continuous data for the purpose of planning in the

context of robot learning.

10

2. RELATED WORK

Bridging the representational gap between the continuous sensorimotor world of

a robotic system with the discrete symbols and rules has been a key research goal from

the early days of intelligent robotics [57, 58]. While grounding predefined symbols in

the sensorimotor experience of the robot has been widely used for intelligent robot

control [59–63], some argue that symbols “are not formed in isolation”, and “they

are formed in relation to the experience of agents” [64]. We share this viewpoint

that has been investigated in a number of studies. Some studies realized systems

that clustered low-level sensory experience into categories and performed subsymbolic

planning in the continuous perceptual space [65], [66]. While simple planning capability

was achieved, the use of continuous prediction and state transition operators limited

the use of powerful off-the-shelf symbolic AI planners. In another line of research,

Ozturkcu et al. [67] asked whether there are any symbols formed in a deep RL agent

after training the agent for a given task without imposing any prior on the architecture

or the objective.

Recently proposed hybrid approaches exploit the prior domain knowledge by com-

bining non-monotonic logical reasoning with deep networks [68,69]. In these architec-

ture, there is a cascade of two models where the first model is the prior domain knowl-

edge encoded as an Answer Set Programming (ASP) program [70], and the second

model is a convolutional neural network (CNN). If the ASP program fails to classify an

example, it redirects the necessary parts of the input to CNN for further processing.

This pipeline results in better accuracy with less computation when compared with

CNN classification. Furthermore, given labeled examples about the task, the ASP pro-

gram can be further extended to include new rules about the environment by using the

decision paths of a trained decision tree. These works primarily focus on integrating

neural models with common-sense knowledge or domain knowledge to increase perfor-

mance. Our work is similar to these works in the sense that they also learn previously

unknown rules with decision trees from subsymbolic data that would help in planning.

11

On the other hand, we focus on learning symbols from the interaction data that the

robot collects by executing random actions; learning symbols that depend on the action

set of the agent.

The bottom-up generation of symbolic structures from the continuous interaction

experience of a robot has started to draw attention in robotics [38], [71]. Konidaris et

al. [39], [72] studied the construction of symbols that are directly used as preconditions

and effects of actions for the generation of deterministic and probabilistic plans in 2D

agent settings, and later extended the framework into a real-world robot setting [73].

However, these studies use a global state representation, and therefore, symbols learned

in an environment cannot be used directly in a novel environment. In follow-up works,

James et al. [44], [74] construct symbols with egocentric and object-centric representa-

tions to allow the transfer of previously learned symbols to new environments. These

studies train an SVM classifier for each effect cluster to find groundings of precondition

symbols. Ugur et al. [42], [45] formed symbols used in plan generation in manipulation

using a combination of several ad-hoc machine learning techniques such as clustering

with X-means [75] and classification with SVMs. Furthermore, they used hand-crafted

features to represent scenes and effects. On the other hand, our proposed architecture

simultaneously learns object categories (in the encoder output) and their correspond-

ing effect categories (in the decoder output) without resorting to any clustering tech-

niques on the object or effect space. The object and effect categories automatically

emerge as the network with binary bottleneck units minimizes the effect prediction

error. Furthermore, deep neural networks allow us to process high-dimensional im-

age data efficiently using convolutional layers. This design approach offers a generic

symbol formation engine that runs at the pixel level using deep neural networks. In

terms of symbol multiplicity, our approach is more parsimonious, as we do not form

symbols for each action as in [45] and [73]; but instead, we use a single decoder network

that takes the action as part of the input. To be concrete, for n effect categories and

k actions, our system generates nk symbols, whereas the aforementioned approaches

generate nk symbols. Learning a single model for all actions possibly allows internal

representations learned for one action to be re-used directly for other actions. Another

12

significant advantage of our model is that it is differentiable and thus can be integrated

into gradient-based state-of-the-art machine learning architectures for further tackling

more complex problems.

Asai and Fukunaga [76] realized a similar neural framework where they first train

a state autoencoder with discrete latent units, then learn the action precondition-effect

mappings. Follow-up works combine these two steps and learn the action mapping

together with the state auto-encoder [77, 78]. These works are in the visual domain

(for example, 2D puzzles) and achieve visualized plan execution while we focus on

robot action planning and execution in the 3D world. Moreover, a critical difference of

our method from the aforementioned work is that we learn object symbols by taking

into account action and the effects in addition to object features, which facilitates the

formation of symbols that are likely to capture object affordances [79,80].

Another line of research focuses on bilevel planning, in which a symbolic plan

is complemented by a motion and task planner [81, 82]. In these works, operators are

learned for bilevel planning when given parameterized policies for continuous planning.

A follow-up work learns these parameterized policies as well, completing the whole

neurosymbolic planning pipeline [83]. While these works fix the state abstractions,

Silver et al. [84, 85] also learn new state abstractions with a surrogate objective for

planning. Achterhold et al. [86] learns policies parameterized by neural networks based

on the symbolic state transitions. Quite similar to the rule learning procedure in

Chapter 8, Kumar et al. [87] learn a set of operators by considering only a subset of

abstract effects to prevent learning complex operators. The main difference between

our work and theirs is that we select this subset as the relevant symbols for the action,

whereas they consider universal quantifiers in the abstract effect. Another similar

work trains a network that outputs relations between objects from RGB images given

objects’ canonical images [88].

13

3. HIGH-LEVEL FEATURES FOR RESOURCE

ECONOMY AND FAST LEARNING IN SKILL TRANSFER

3.1. Introduction

Earlier robotic work indicates that units that capture high-level features are po-

tential candidates to facilitate effective knowledge transfer [42]. From a neural compu-

tation point of view, this also makes sense as compact high-level representations would

be more economical to process and pass around in the neural circuits of biological sys-

tems. Thus, the brain might adopt a strategy to represent sensorimotor information

compactly with minimum information loss, in line with the information compression

ideas [89,90]. Another hypothesis can be obtained by generalizing the idea that slowly

changing features in sensory data tend to correspond to more high-level concepts [91] to

neural responses. According to this view, the brain might seek to exploit those neurons

that are more stable over the others that show frequent changes. For example, when

a hand waving action is observed, the earlier sites in the visual processing pathway

(e.g., areas V1, V2) would show temporally changing activity, whereas at the end of

the processing pipeline (i.e., in area IT), the recognition of the hand waving action

would be represented with a few neurons, which would show stable activity during the

most of the observation period over a variety hand waving actions.

Motivated by these hypotheses, in this chapter, we analyze different ways of

transferring previously learned representations for a new task in an economical way.

More specifically, we consider two methods: (1) principal component analysis (PCA)

for the minimum information loss, and (2) slow feature analysis (SFA) [91] for creating

signals that change slowly. PCA reduces the dimensionality of the data while preserv-

ing the information maximally, which makes it a suitable candidate for transferring

compact features. On the other hand, SFA, which is not very well explored in the

transfer learning context, creates slowly changing representations that are arguably

more robust because objects of interest in the real world do not make abrupt changes,

14

considering the notion of object permanency. In our experiments, we first train a deep

Q-network [22] on a task where the goal is to move the robot arm to a desired target

position in the presence of a rectangular obstacle that may appear at different loca-

tions. After training, we create separate skill transfer scenarios in which either PCA

or SFA transformations are applied on the last hidden layer activations of the network

and used in new task learning by augmenting the features found in the last hidden layer

of the new network (see Figure 3.1). We compare these scenarios with the baselines of

skill transfer with full-layer output and no-transfer scenarios. Our experimental results

show that:

• Using features that are constructed with SFA is not only more economical in

terms of the number of units but also better for skill transfer than the naive

approach of using the full set of layer activations.

• PCA is also helpful for resource economy in skill transfer but not as good as SFA

in terms of the success rate of the new task.

• SFA and PCA capture interpretable high-level features such as joint angles, tip

locations, and the distance from the tip position to the goal position solely from

the activation history of the network.

In the rest of this chapter, we detail our methodology in Section 3.2, define the

experimental setup in Section 3.3, give the results in Section 3.4, and conclude in

Section 3.5.

3.2. Methods

Suppose that an agent has developed a neural system to solve a specific task.

When the agent encounters a similar task, neurons in this system will respond to the

sensorimotor input, albeit possibly in a different way since the input will be different.

Even though the system does not directly provide the appropriate motor control output,

it would be economically viable to use a previously learned network instead of re-

learning everything from scratch. We focus on extracting features from this network in

15

an economical way. Note that it is not important how this network has been formed; it

might have been learned via stochastic gradient descent, pre-wired, or obtained through

an evolutionary algorithm. The hypothesis is that on each case, the network should

have developed task-specific responses in order to successfully solve the task.

a0 ak

s0 s1 sn

Slow Feature

s0 s1 sn

s0 s1 sn

a0 ak

s0 s1 sn

a0 ak

Primary task

Secondary tasks

Figure 3.1. The general outline of the transfer method with slow features.

16

Firstly, we train a deep Q-learning agent [22] on a primary task to have a network

which we can extract features from. In the primary task, a robot arm tries to move

its arm to the goal position while avoiding a rectangular obstacle. After training, we

extract features from this network in three different ways and use them in a secondary

task to assess the bootstrapping effect induced for the new task learning. As a baseline

we also learn the new task from scratch without any transfer. So, overall, we have

these cases:

(i) Learning from scratch (transfer:none). The new task is trained without any

transfer to form a baseline for the next three transfer scenarios.

(ii) The last hidden layer activations (transfer:full). This is one of the most

frequently used methods for transferring visual features from networks that are

trained on large-scale data sets [92] and serves as a reference for the next two

methods.

(iii) Transforming the last hidden layer with PCA (transfer:PCA). While the last

layer of activations provides useful information, it is mostly distributed in many

units. PCA is especially useful for concentrating the distributed information into

fewer units, effectively reducing the number of neurons, thus reducing the number

of weights that needs to be optimized for learning the new task. Let us denote our

dataset as X = {Hi}Ni=1 where N is the number of robot movement trajectories

arising from executing the primary task of the robot, and Hi is an Ti×D matrix

where Ti is the number of timesteps in ith trajectory and D is the dimensionality

of the last hidden layer. We concatenate each Hi from the first dimension so that

X is a (T1 + T2 + · · · + TN) ×D matrix. We want to find a projection z = Xw

such that Var(z) is maximized. This leads to the objective,

arg max
w

wTXTXw

wTw
, (3.1)

which is the Rayleigh quotient, and the expression takes its maximum value when

w is equal to the eigenvector with the largest eigenvalue of XTX [93].

(iv) Transforming the last hidden layer with SFA (transfer:SFA). PCA puts an em-

phasis on the maximum information-preserving units. On the other hand, SFA

tries to minimize the time derivative of the output signals. More specifically, SFA

17

creates output features z = Xw with the following objective and restrictions [91]:

min E[ż2i] (3.2)

subject to

E[zi] = 0, (3.3)

E[z2i] = 1, (3.4)

E[zizj] = 0 ∀j < i. (3.5)

Here, Equations (3.3) and (3.4) prevent the trivial solution of a constant feature

and also force the output to be normalized. Equation (3.5) forces features to be

orthogonal to each other. The solution can be found by first whitening the data

and then applying PCA to the time derivative of X. This method is shown to be

useful for extracting the independent factors of an input signal.

CNNprimary

CNNsecondary

x

hp

hs

os

CNNprimary

CNNsecondary

x

hp

hs

SFA(hp)

os

(a) (b)

Figure 3.2. Different transfer methods are depicted. (a) transfer:full. (b)

transfer:sfa. transfer:pca is identical to (b) except that the transformation is

done with PCA instead of SFA.

From a network trained on a primary task, we extract the information implicitly

represented in the weights with these three methods to use it on a new task by con-

catenating the features to the input of the last layer, as shown in Figure 3.2. In our

experiments, we define the secondary task to be a reinforcement learning setup as well.

18

The environment is similar to the primary task, except that there are different types

of obstacles to avoid.

(a)

(b) (c) (d)

Figure 3.3. The input from the camera is shown on the top-right inset. The regions of

penalty around obstacles are visualized in blue (see text). (a) The experiment setup.

(b) A rectangular obstacle. (c) L-shaped obstacle. (d) Two obstacles.

Note that both PCA and SFA define an affine transformation of the last layer

and, thus, do not bring any advantage in terms of function complexity since two linear

transformations can be combined into a single one. However, re-alignment of the feature

space can greatly accelerate the speed of convergence with stochastic gradient descent

[94]. Likewise, we expect that agents that use these transformations will exhibit a better

performance with fewer samples. In the next section, we detail the experimental setup

and the results of our experiments.

19

3.3. Experiment Setup

We perform our experiments on CoppeliaSim 4.2.0 simulator [95]. The experiment

setup consists of a UR10 [96] robot arm with a solid cylinder attached to its end

effector and a camera placed 180cm over the table for a top-down visual perception.

The robot arm can make planar movements in eight different uniform directions in a

80cm × 100cm rectangular workspace. The camera input provides a 64 × 64 pixels

colored image at each timestep (Figure 3.3). In the environment, there are red-colored

rectangular and L-shaped obstacles, a green goal marker, and distractor markers that

dynamically change colors in the RGB range of (0, 0, 0) − (255, 0, 255). The general

overview of the setup is shown in Figure 3.3.

In this environment, we define two types of tasks: a primary task and a secondary

task. We train a network to solve the primary task and then try to transfer the

knowledge inside the network to the secondary task using different methods. In the

primary task, the robot tries to move its end-effector to the goal position while avoiding

a rectangular obstacle. There are two secondary tasks that differ by their obstacle

types. In the first one, there is an L-shaped obstacle instead of a rectangular one, and

in the second one, there are two rectangular obstacles. Secondary tasks are deliberately

selected to be a linear increment from the first one to see if there are high-level features

in the network, such as an ‘obstacle detector’. If there are such high-level units, then the

superposition of two obstacles would correspond to a new one; thus, a transfer would

increase the speed dramatically. In both primary and secondary tasks, we included

distractors that change colors and move in random directions with a constant speed to

increase the difficulty of the tasks.

The reward function for both environments is defined as

R(t) =


10 if ∥xtip(t)− xgoal∥2 < 5cm

10∆t(xtip, xgoal) else if ∥xtip(t)− xobstacle(t)∥2 > τ

10(∆t(xtip, xgoal)− relu(∆t(xtip, xobstacle))) otherwise,

(3.6)

20

where τ is a threshold for obstacle proximity penalty and ∆t denotes the change in the

distance between the robot end-effector and the target over consecutive time steps:

∆t(x, y) = ∥x(t− 1)− y(t− 1)∥2 − ∥x(t)− y(t)∥2. (3.7)

We set τ to 21cm for the primary environment and 28cm for the secondary environ-

ments. The robot gets a penalty whenever it goes towards the obstacle when it is in

the blue region visualized in Figure 3.3.

64

64

3

32

32

16

32

16

16

64

8

8
Flatten

4096

512
100

64

64

3

32

32

16

32

16

16

64

8

8
Flatten

4096

512

SFA

Primary Network

Secondary Network

612

9

Conv3x3

Conv3x3

Conv3x3

Conv3x3

Conv3x3

Conv3x3

: Frozen layers
: Trainable layers

Figure 3.4. The transfer network architecture for the transfer:sfa method.

transfer:pca is the same, except there is a PCA transformation instead of SFA.

Conv3x3 are convolutional layers with 3× 3 sized kernels.

We use a convolutional neural network (CNN) architecture, where three convolu-

tional layers followed by two fully connected layers are employed in each architecture.

Convolutional layers have 16, 32, and 64 channels successively. Each layer has a kernel

21

size of 3 × 3 with a stride of two and a padding of one. Fully connected layers have

512–9 units. We concatenate the transferred features to the last hidden layer except

the learning from scratch case. For example, if we transfer 100 slow features, the di-

mensionality of the last hidden layer becomes 512 + 100 = 612. The outline of the

architecture is shown in Figure 3.4. For PCA, we selected the first 100 components,

which cover more than 99% of the variation in the data. Likewise, we selected the first

100 slow features for a fair comparison.

We train each model as a deep Q-network [22] for 2000 episodes with a replay

buffer of size 50,000. Each episode lasts for at most 200 timesteps; after that, the

episode terminates. We used the reward function defined in Equation (3.6). The last

fully connected layer is used for the Q-value estimation. There are eight different

actions for eight different directions and an additional action for no operation. For the

optimization, we use Adam optimizer [7] with a learning rate of 0.001 with no learning

rate decay.

3.4. Results

In this section, we first test the generalization performance attained by the trans-

fer of features acquired with different methods to a new task in 3.4.1. Next, we analyze

correlations between the proposed features and high-level task-related features in Sec-

tion 3.4.2. Lastly, in Section 3.4.3, we visualize the responses of neurons for varying

inputs to get an insight into their functionalities.

3.4.1. Transfer Performance

The aim of this experiment is to test the bootstrapping effect of using a previ-

ously learned representation on learning a similar task from scratch. To this end, we

concatenate the activations of a previously trained network (described in the previous

section) to the last hidden layer. This method is one of the basic transfer learning

methods used in various applications [92]. We compare the transfer of plain activa-

22

tions, features created with PCA, and with SFA. In addition, we train a network from

scratch with no transfer to assess whether transfer methods bring any advantage for

learning the new task.

25 50 100 200
Number of training configs

-10%

0%

10%

20%

30%

40%

50%

60%

70%

%
 p

at
h

co
ve

re
d

to
wa

rd
s g

oa
l

none
SFA
PCA
full

(a)

25 50 100 200
Number of training configs

-10%

0%

10%

20%

30%

40%

50%

60%

70%

%
 p

at
h

co
ve

re
d

to
wa

rd
s g

oa
l

none
SFA
PCA
full

(b)

Figure 3.5. The generalization performance measured as distance covered towards the

goal vs. number of configurations experienced during learning in the new task. A

secondary environment with (a) an L-shaped obstacle, (b) two rectangular obstacles.

23

Each model is trained with 25, 50, 100, and 200 number of training configurations

for 2000 episodes. Here, a training configuration refers to an environment setting (i.e.,

the initial position of the objects). Each episode is initialized with a configuration

sampled from this set. After convergence, we test each model at every 500 episodes on

the previously unseen environment settings (i.e., configurations) to observe the gener-

alization performance. For testing, we collect 100 runs with each model and calculate

the average percentage of path covered towards the goal, and treat this estimate as one

test result. The percentage of the path covered toward the goal is calculated as

initial distance− final distance

initial distance
× 100. (3.8)

Here, the distance is the Euclidean distance from the robot’s tip position to the goal

position. The average of 15 different test results at best-performing episodes (validated

with five results) for each model is reported in Figure 3.5.

We first see that all transfer methods increase the performance even though they

are more susceptible to overfitting with more parameters and fewer training configura-

tions. This result suggests that there might be indeed high-level features in previously

learned networks that help learn new skills from a small number of examples. We ob-

serve that using transfer:SFA gives better performance compared to transfer:PCA,

transfer:full, and transfer:none except for 25 and 200 configurations in the sec-

ondary environment with two rectangular obstacles (Figure 3.5b). Welch’s t-test is

used to understand the significance of the results [97]. We use p ≤ 0.05 as our thresh-

old for significance. In Figure 3.5a for the environment with L-shaped obstacle, Welch’s

t-test shows a significant difference between transfer:SFA and transfer:full for 25,

100, and 200 configurations (p = 0.0008, p = 0.022, and p = 0.041, respectively), and

almost significant difference for 50 configurations (p = 0.082). For two rectangular ob-

stacles in Figure 3.5b, transfer:SFA is significantly better than transfer:full for 50

and 200 configurations (p = 0.0001 and p = 0.0125, respectively). The transfer:PCA

method also has a competitive performance with less number of units when compared to

transfer:full. Note that SFA and PCA features are 100-dimensional vectors, while

plain activations are 512-dimensional vectors. These results show that SFA indeed cre-

ates more condensed features that are appropriate for skill transfer. The bootstrapping

24

effect fades away when we increase the number of training configurations to 200 con-

figurations. This is an expected result since every model gets better when we increase

the variation in the training set. However, the usage of low training configurations is

desirable in many real-world settings. On the other hand, there is still a performance

gain even for 200 configurations for two rectangular obstacles.

500 1000 1500 2000
Number of episodes

-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%

%
 p

at
h

co
ve

re
d

to
wa

rd
s g

oa
l

50 configs
none
SFA
PCA
full

500 1000 1500 2000
Number of episodes

-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%

100 configs
none
SFA
PCA
full

500 1000 1500 2000
Number of episodes

-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%

200 configs
none
SFA
PCA
full

500 1000 1500 2000
Number of episodes

-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%

%
 p

at
h

co
ve

re
d

to
wa

rd
s g

oa
l

50 configs
none
SFA
PCA
full

500 1000 1500 2000
Number of episodes

-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%

100 configs
none
SFA
PCA
full

500 1000 1500 2000
Number of episodes

-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%

200 configs
none
SFA
PCA
full

(a) (b)

500 1000 1500 2000
Number of episodes

-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%

%
 p

at
h

co
ve

re
d

to
wa

rd
s g

oa
l

50 configs
none
SFA
PCA
full

500 1000 1500 2000
Number of episodes

-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%

100 configs
none
SFA
PCA
full

500 1000 1500 2000
Number of episodes

-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%

200 configs
none
SFA
PCA
full

(c)

Figure 3.6. Test performance for different episodes with different methods and

configuration numbers in the secondary environment with the L-shaped obstacle. (a)

50 configurations, (b) 100 configurations, and (c) 200 configurations.

25

(a) (b)

(c)

Figure 3.7. Test performance vs. number of training episodes for different methods

and configuration numbers in the secondary environment with two rectangular

obstacles. (a) 50 configurations, (b) 100 configurations, and (c) 200 configurations.

We also report the test results at different episodes in Figures 3.6 and 3.7. Figures

suggest that using an additional set of features from a previously learned task helps

generalization, especially when there are fewer number of configurations. We see that

transfer:sfa performs on par with transfer:none in the initial stages of the training,

then achieves the peak of its performance after 1500 episodes, which is generally less

26

than other methods. On the other hand, the contribution of transfer:full steadily

increases. This might be due to the distribution of information in the neurons. Only

a few SFA units contain useful information for the task, and when these neurons

are discovered with gradient descent in later steps, the performance increases rapidly.

Moreover, transfer:sfa learns faster compared to other methods for less number of

configurations (reaching the peak around 1500 episodes for 50 and 100 configs in Figures

3.6 and 3.7) and also requires less parameter update compared to transfer:full as

there are fewer units, which is an essential property for small, autonomous systems

with no access to a graphics processing unit (GPU). See Section 3.4.4 for an empirical

analysis regarding the computational needs for SFA.

0 100 200 300 400 500
Sorted units

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 D

(ti
p,

go
al

) Plain units
PCA units
SFA units

0 100 200 300 400 500
Sorted units

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 D

(ti
p,

ob
st

ac
le

)

Plain units
PCA units
SFA units

(a) (b)

0 100 200 300 400 500
Sorted units

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 'p

at
h

bl
oc

ke
d'

Plain units
PCA units
SFA units

0 100 200 300 400 500
Sorted units

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 jo

in
t 0

Plain units
PCA units
SFA units

(c) (d)

Figure 3.8. Units are sorted by their correlation with high-level features. Plain

activations, SFA and PCA units are highlighted in blue, red and green, respectively.

(a)-(c) High-level features, (d) Joint 0.

27

0 100 200 300 400 500
Sorted units

0.0

0.2

0.4

0.6

0.8
Co

rre
la

tio
n

wi
th

 jo
in

t 1
Plain units
PCA units
SFA units

0 100 200 300 400 500
Sorted units

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 jo

in
t 2

Plain units
PCA units
SFA units

(a) (b)

0 100 200 300 400 500
Sorted units

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 jo

in
t 3

Plain units
PCA units
SFA units

0 100 200 300 400 500
Sorted units

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 jo

in
t 4

Plain units
PCA units
SFA units

(c) (d)

Figure 3.9. Units are sorted by their correlation. SFA and PCA units are highlighted

in red and green, respectively. (a)-(d) Joints 1-4.

3.4.2. Correlation with High-Level Task Properties

In this experiment, we investigate correlations between SFA/PCA units and high-

level features. To this end, we freeze the network and run the policy for 100 episodes to

collect hidden layer activations for PCA and SFA calculations. Then, we apply PCA

and SFA with 100 components to the last hidden layer activations. To understand

whether the transformed features capture any high-level features, such as relative goal

position, obstacle position, and joint angles that are helpful to solve the task, we

calculate the correlation between those high-level features and PCA/SFA features. We

also compare the correlations between the last layer activations to see the effect of

these transformations on the correlations.

28

In Figures 3.8 and 3.9, each subplot shows the distribution of correlations for each

different high-level feature. Units are sorted by their correlation value for better visu-

alization. After the transformation with PCA and SFA, most of the units become less

correlated while only a few of them become highly correlated. This is probably due to

PCA and SFA objectives forcing components to be decorrelated. From Figures 3.8 and

3.9, we can say that PCA and SFA capture the general neural response; they eliminate

redundant neural responses and focus on the important ones by keeping the general

response profile of the hidden layer. Out of the two, the SFA unit distribution has more

units with high correlation, especially for joint angles. This might be one of the reasons

that the learning performance of transfer:sfa is comparable to transfer:full and

even better with fewer configurations since redundant and possibly noisy variations are

filtered out by SFA.

Table 3.1. Units that correlate the maximum with high-level features are reported.

The numbers on the left and right denote the correlation and index, respectively.

High-level feature Full activations PCA features SFA features

Joint 1 0.69 / 297 0.74 / 2 0.77 / 1

Joint 2 0.55 / 249 0.49 / 5 0.58 / 3

Joint 3 0.55 / 249 0.50 / 5 0.59 / 3

Joint 4 0.56 / 249 0.52 / 5 0.61 / 3

Joint 5 0.38 / 471 0.20 / 3 0.19 / 2

Joint 6 0.69 / 297 0.74 / 2 0.77 / 1

D(xtip, xgoal) 0.35 / 303 0.26 / 2 0.26 / 2

D(xtip, xobstacle) 0.48 / 147 0.47 / 3 0.40 / 3

‘path blocked’ 0.35 / 147 0.38 / 3 0.25 / 2

In Table 3.1, we select the most correlated units from each method and report

their correlations. We see that all methods have a high correlation with joint angles

and a slightly lower correlation with high-level features that relate the tip position to

other objects. The high correlation with joint angles is an expected result, as the agent

29

should know about the location of the arm in order to navigate it to the goal position.

Since even for full activations we see a high correlation for task-level features, there

might indeed be single, symbolic units specialized for a specific task. On the other hand,

SFA and PCA further refine these features and create more compact representations.

2

-2

0

(a)

2

-2

0

(b)

Figure 3.10. The first 20 (a) SFA and (b) PCA units’ responses to tip positions.

Units are sorted from left to right and top to bottom by their eigenvalues.

3.4.3. Visualizing Features

We created heatmaps for the responses of different SFA and PCA units to varying

inputs. In Figure 3.10, each rectangle represents a unit’s average response to different

tip locations. For example, for the top left unit in Figure 3.10a, the response is high

when the tip is located around the bottom left corner of the table, and it is low around

the bottom right corner. To create these figures, we averaged out other variables (i.e.,

the goal position and the obstacle position). We see that both SFA and PCA units

respond to blob-like regions of the table. The first few units are very compact and

can be partially treated as symbolic representations (e.g., in Figure 3.10a, the first and

the third units detect the position in the x-axis and y-axis, respectively.) As the unit

number increases, these regions start to become scattered.

30

1

-1

0

(a)

0.5

-1

(b)

Figure 3.11. The first 20 (a) SFA and (b) PCA units’ responses to the relative goal

position. At the center, the distance is zero. Units are sorted from left to right and

top to bottom by their eigenvalues.

0.5

0

-1

(a)

1

-0.5

(b)

Figure 3.12. The first 20 (a) SFA and (b) PCA units’ responses to the relative

obstacle position. At the center, the distance is zero.

31

While the tip position is a piece of useful information to solve the task, the agent

should also know the relative position of the goal and the obstacle with respect to its tip

to successfully navigate in the environment. To understand the responses for relative

distance to the goal and the obstacle, we created heatmaps with a similar procedure

in Figures 3.11 and 3.12. The center point of each subplot represents the zero distance

(i.e., xgoal − xtip = (0, 0)). In Figure 3.11, most of the units are scattered except the

first few ones. This figure suggests that both SFA and PCA are not very successful

at covering the relative goal position compactly; the information is distributed into

many units as in plain activations. However, in Figure 3.12, we see that both methods

generate neuron responses that are inactive when the tip is close to the obstacle.

0 5 10 15
goaly tipy

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

go
al

x
tip

x

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 5 10 15
obstacley tipy

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ob
st

ac
le

x
tip

x

0.00

0.20

0.40

0.60

0.80

1.00

1.20

(a) (b)

Figure 3.13. Neurons that correlate the most with (a) the relative goal position and

(b) the relative obstacle position.

To understand whether these two high-level information are present in the net-

work prior to transformation, we visualized the neurons that correlate the most with

the relative goal position and the relative obstacle position in Figure 3.13. For the

bottom half in Figure 3.11, we see that the most correlating neuron partially responds

to the x-axis location of the relative goal position. On the other hand, in Figure 3.12,

the response is similar to SFA and PCA units; it becomes inactive when the distance

is below some threshold.

32

We conclude that even though the plain activations carry a distributed represen-

tation in general, they might represent some high-level information as a by-product

that can be further processed and refined. We see that SFA and PCA transformations

create high-level features to detect the tip position; however, this is not as compact

as for the relative positions. Note that both SFA and PCA are unsupervised meth-

ods, not specifically tailored for creating more symbolic information. However, since

they automatically create low-complexity signals in a principled way, they are good

candidates for a more complex system.

3.4.4. Computation Time of Slow Features

The computation of slow features is a one-time process that depends on the sin-

gular value decomposition of the trajectory array. For 200 trajectories with a total

of 20961 timesteps, the computation of slow features takes 0.36 seconds on an Intel

i7-8700K CPU. The only computational overhead after extracting slow features is ma-

trix multiplication and addition. For comparison, we analyzed the inference time of

transfer:sfa and transfer:full. For transfer:sfa, 10,000 forward iterations took

6.409 ± 0.022 seconds on average out of 20 runs. If we convert these numbers to fre-

quencies, then the 99% confidence interval is 1544-1576Hz. On the other hand, the

same experiment took 6.223 ± 0.019 seconds for transfer:full, which translates to

1592-1621Hz. These experiments are done on an Intel i7-8700K CPU. On a compara-

bly older CPU (i5-5257U), transfer:sfa has a confidence interval of 713-738Hz, and

transfer:full has 741-766Hz. The frequency drop due to the additional computation

is tolerable since the frequency is still higher than the maximum control frequency of

the robot (500Hz for UR10). Moreover, SFA only creates an affine transformation,

which can be integrated with the learned last layer after the training.

3.5. Conclusion

As the literature expands rapidly, the integration of architectures that are opti-

mized for a specific scenario will gain more importance. In this chapter, we provide

33

a principled way for transferring the existing knowledge in a network to new prob-

lems. Our experimental results show that applying SFA, an unsupervised method, to

the last hidden layer of a trained network generates features that are useful for skill

transfer. Transfer with SFA performs better with less number of units compared to

transfer with the full layer. This is a desirable property for lifelong learning systems

because of its resource economy. We see that features that are generated from SFA

are more interpretable and can be treated as quasi-symbolic information. Although

not fully symbolic, they are of low complexity, i.e., the response of the units does not

change abruptly as we change the input (especially the first few units). These might

be precursors for fully symbolic systems because of their low complexity response to

input. Moreover, due to its formulation, the components with the lowest eigenvalue

will contain the most useful and symbol-like information. Therefore, one can always

tune the number of units by simply picking the first k components with the lowest

eigenvalues, a procedure familiar to PCA.

Nevertheless, as features generated from SFA or PCA are not fully symbolic,

we cannot directly use them for the purpose of planning; planning, in the context of

classical AI, is a search on a tree data structure, which is composed of nodes (state)

and edges (actions). If these activations are not fully symbolic, then the nodes in the

tree would not be finite. In the next chapter, we propose an architecture that imposes

a discreteness constraint on the learned representations so that we can easily convert

and use them for domain-independent planning.

34

4. DEEPSYM: DEEP SYMBOL GENERATION AND

RULE LEARNING FROM UNSUPERVISED

CONTINUOUS ROBOT INTERACTION FOR PLANNING

4.1. Introduction

In this chapter, we address the challenging problem of discovering discrete sym-

bols and unsupervised learning of rules from the low-level interaction experience of a

self-exploring robot. For this purpose, we propose a novel deep neural architecture

for symbol formation and rule extraction. At the core of our method, the symbols

are discovered in the discrete latent space formed by the bottleneck layer of a predic-

tive, deep encoder-decoder network that takes the image of an object and the action

applied as the input and produces the effect generated by the action as the output.

Symbols, which are the output of the encoder network, hold information for the effect

prediction for a given action. Furthermore, our architecture allows for transforming

the complete low-level sensorimotor experience into a symbolic experience, facilitating

direct rule extraction for AI planning. To this end, decision tree models are trained to

learn probabilistic rules that are translated to Probabilistic Planning Domain Definition

Language (PPDDL; [98]) operators that are standard in probabilistic planning. Note

that the predicates that appear in the PPDDL operators correspond to the discovered

symbols.

In order to realize this framework, we created a setup where a simulated robot

manipulator interacts with objects, poking them in different directions and stacking

them on top of each other to collect interaction experience for object categorization

and rule learning. Our system successfully constructs a latent representation through

which object and relational symbols are discovered, which can be interpreted by humans

as ‘rollable’, ‘insertable’, or ‘larger-than’. Contrary to symbols generated by systems

that disregard actions and effects, our architecture is shown to generate action-effect-

regulated symbols that are more effective in abstract reasoning over the actions of the

35

robot and the consequences in the environment. Furthermore, the number of symbols

is determined automatically by optimizing the trade-off between prediction capability

and bottleneck size. Finally, the system acquired the capability to generate effective

plans to achieve goals such as building towers of desired heights from given cubes,

balls, and cups using off-the-shelf probabilistic planners. To show the generality of

the proposed approach, we also conduct a second set of experiments in a non-robotic

domain. To be concrete, we test our approach in the adapted MNIST 8-tile puzzle

domain [76]. Our experiments show that the system learns symbols that allow for

creating plans to move the empty tile into arbitrary positions.

Our primary contribution is a generic neural solution for mapping raw senso-

rimotor experience into the symbolic domain. The same architecture can be used to

discover object symbols, effect symbols, and object-object relational symbols. The pro-

posed network further allows progressive learning of increasingly complex abstractions,

exploiting previously learned abstractions as inputs. The learned symbols allow the

abstraction of the interaction of the robot with its environment as a Markov decision

process, which allows the use of symbolic planning systems for goal satisfaction. In the

current study, to show this, we transformed the learned rules into probabilistic PDDL

operators, which allowed probabilistic plan generation and execution achieving goals

beyond what was possible with the direct use of the training data.

4.2. Problem Formulation

In this chapter, we refer to symbols as discrete low-dimensional vectors extracted

from deep neural networks for the current state and used to predict the observed effect

of specific actions. More formally, a symbol z ∈ Z is a discrete representation that

represents a subset P of a continuous high-dimensional space Rn (e.g., the state-space,

or the effect-space). The symbol-space Z can be defined as a set of k-dimensional

boolean vectors Z = Bm = {0, 1}m, or as a set of atoms Z = {z1, z2, . . . , zm}. The

important condition here is that the symbol space should be finite, and its cardinality

|Z| should preferably be small. In general, the symbol learning problem refers to

36

finding the mapping f : Rn → Z, which would allow us to do logical reasoning in the

symbolic domain.

Given a set of discrete actions A = {a1, a2, ..., ak}, continuous object (or state)

space Rn, and continuous effect space Rm, we are interested in learning an encoder func-

tion f : Rn → Z and a decoder function g : Z×A → Rm from samples {o(i), a(i), e(i)}Ni=1

collected by interacting with the environment. Essentially, the encoder outputs symbol

z given the object state o ∈ Rn, and the decoder outputs effect e ∈ Rm for symbol z

and action a. After learning the encoder and the decoder function by iteratively opti-

mizing an objective (which will be discussed in Section 4.3), z corresponds to an object

symbol, and c corresponds to an effect symbol that has the grounding e = g(z, a) (note

that c is an atom while e is a continuous vector). Once we have such symbols, we can

construct a high-level plan in the symbolic space by transforming the environment to

a probabilistic PDDL domain defined over the symbols and then use state-of-the-art

off-the-shelf planners to find an action sequence that arrives at the desired goal state.

The experiments reported in this chapter involve two environments from differ-

ent domains, namely, a tabletop robotic manipulation environment and the adapted

MNIST 8-puzzle environment [76]. The former is an embodied robotic environment

in which symbols that emerge depend on the actions executed by a robotic arm and

their corresponding effects. In the MNIST 8-puzzle environment, an agent without

an embodiment executes actions and observes the corresponding effects as the visual

change in the environment. Symbols are learned with respect to these actions and

visual effects.

For simplification, we make the following assumptions in the tabletop manipu-

lation environment. The agent is assumed to have a small number of actions, such

as poking and stacking an object. Such an action repertoire can be autonomously

acquired through a developmental progression [99] or obtained through learning from

demonstration and reinforcement learning [100,101]. In Chapter 7, we show how such

actions can be learned from parameterized actions. The agent is equipped with image

37

processing capability to detect the objects in the camera image and also calculate their

pixel coordinates. Furthermore, using the same object-tracking method, the agent can

take cropped images as input. In the tabletop setup, we realized this with a simple

algorithm, as the background is uncluttered. In a real-world scenario, state-of-the-art

computer vision techniques can be used to detect and track objects in the 3D world.

In the MNIST 8-puzzle environment, the only assumption is that the agent has

access to the action repertoire (e.g., ‘slide-left’, ‘slide-down’), which it can execute to

see the effects of its actions.

(I) Interaction with objects with pre-defined actions (II) Symbol formation (discovery of object and effect categories)

Single Action
Effect

f1 g1

f2

Single Action
Effect

f1 g1

g2 Paired Action
Effect

(III) Decision tree learning(IV) Translation of rules to PPDDL operators
Probabilistic rules

Generated plans for

verification

High-level

discrete object

and effect

observations

Low-level

continuous object

and effect

observations

e1 e2

e3e1 e2e4

Action

Action

Action

Figure 4.1. General system overview of rule generation and refinement.

4.3. Methods

Figure 4.1 provides the overall learning architecture of our proposed system in the

robotic manipulation environment; the application of the architecture to the MNIST

8-puzzle domain is given in Section 4.5. In the environment interaction phase, the

38

robot chooses an action from its action repertoire a ∈ A = {a1, a2, . . . , ak}, observes

the object state o, executes the action, and records the resulting effect e.

Next, the interaction experience, {o(i), a(i), e(i)}Ni=1, is used to form symbols. To

this end, a deep neural network model with two parts is trained to predict e given

o and a. The first part is the encoder network, f(o), which creates a binary latent

vector z given the depth image of the object, o. The second part, the decoder network

g(z, a), predicts the effect e when action a is executed on state o that has the latent

representation z. As the network tries to predict effects, symbolic representations are

created by the encoder network that can be treated as object categories regulated by

the corresponding action-effect experience.

The continuous interaction experience {o(i), a(i), e(i)}Ni=1 is transformed into the

symbolic experience {z(i), a(i), c(i)}Ni=1 using the discovered categories, and then the

symbolic experience is used to distill a decision tree to predict effects given object

categories and actions. The reason to use a decision tree is that we can represent any

statement in propositional logic with decision trees [102], and we can convert rules of

the environment into logical statements that encode pre- and post-conditions of actions

on the objects.

Finally, these statements are represented in PPDDL, which allows one to make

plans in a probabilistic environment. Lastly, plans are executed to validate the learned

symbols and rules. In the following sections, we describe these parts in detail.

4.3.1. Exploration with the Environment

A manipulator robot with a gripper and a depth camera is used to explore the

environment and monitor the changes (Figure 4.2a). The robot is initialized with a

fixed set of actions A = {a1, a2, . . . , ak} through which it interacts with the objects in

its workspace. Forward, side, and top poking actions are used to poke objects from

different sides (Figure 4.2b, top). The stacking action is used to release one object on

39

top of another object (Figure 4.2b, bottom). These actions are encoded with one-hot

encoding. On the perception side, each detected object is represented with its top-

down depth image. The generated change, on the other hand, is represented by the

positional offset of the acted object in pixel coordinates together with the force change

sensed at the wrist joint of the robot. In single-object interactions, the robot observes

and stores the initial state as the object-centered, top-down depth image of the object

and the effect as the change in object position and force sensor readings,

esingle = (∆x,∆y,∆d,∆F), (4.1)

where ∆x and ∆y are the changes in x-axis and y-axis in pixel coordinates, respectively,

∆d is the change in depth, and ∆F is the change in force. In paired-object interactions,

the robot observes and stores the initial state as the combination of two object-centered

depth images (o1, o2), and the effect as the change in position of both objects,

epaired = (∆x1, ∆y1, ∆d1, ∆x2, ∆y2, ∆d2), (4.2)

where ∆x1, ∆y1, ∆d1 refer to the displacement of the first object, and ∆x2, ∆y2, ∆d2

refer to the displacement of the second object.

(a) (b)

Figure 4.2. The tabletop experiment setup with UR10. A simulated UR10 robot arm

and BarrettHand grasper are used for manipulation; a Kinect sensor is used for

perception. Five types of objects are shown in the table. (a) The experiment setup.

(b) Available actions: top—pushing an object; bottom—stacking an object.

40

4.3.2. Symbol Discovery with Deep Networks

The main objective of the network is to discover symbols, i.e., object and effect

categories, that are effective in abstract reasoning about the consequences of robot

actions. In other words, the object categories, together with robot actions, should

give the ability to predict the effect categories. To achieve this, we propose a special

neural network structure that is composed of two parts: an encoder f(o) to predict

z which is the object category, and a decoder g(z, a) to predict e (Figure 4.3, top).

This is an encoder-decoder design that has been shown to be quite successful in many

different applications [20,21], [103,104]. The binary bottleneck layer forces the network

to learn low-dimensional symbolic representations that are useful for predicting the

generated effect of actions. As the input is a top-down depth image, the encoder is

a convolutional neural network with the Gumbel-Sigmoid (GS) function [51, 52] as

the last-layer activation function (where the error back-propagation is handled with

the reparameterization trick; [104]). We also experimented with the sign(x) function

using straight-through estimators (STE; [105]) and found that GS has a lower variance.

Results with STE are given in Appendix A.2. Using GS activation of the bottleneck

neurons, the continuous representation is directly transformed into a discrete category.

The decoder part is realized as a multi-layer perceptron (MLP). The category z of the

object o concatenated with the one-hot vector of action a is given to the decoder as

input. The decoder predicts the effect e expected to be observed on object state o via

action a. The network minimizes the following objective:

L =
N∑
i=1

1

2

(
g(f(o(i)), a(i))− e(i)

)2
. (4.3)

This architecture effectively creates high-level symbolic categories of objects that

encapsulate the effects of executed actions. One important advantage is that the model

does not need hand-engineered object features and object clusters for finding object

symbols, contrary to previous studies, since the system learns discrete categories di-

rectly to optimize the effect prediction performance. Moreover, as the bottleneck layer

is discrete, the possible decoder outputs e = g(z, a) form a finite set E = {e1, e2 . . . }

41

which can be denoted by atoms C = {c1, c2, . . . }. The learned object categories also

serve as input for the discovery of new categories with new interaction experiences,

such as stacking an object o1 on top of another object o2 (Figure 4.2b, bottom).

f1 g1

Action

∆x
∆y

∆x

∆y

Effect

f1

z1

o1

o1

o2

z1

z2

f2
z3

g2

∆F
∆d

f1

∆x1, ∆x2
∆y1, ∆y2

∆F1, ∆F2
∆d1, ∆d2

∆d

∆x1

∆y1∆d1

∆d2

∆x2
∆y2

Action

Figure 4.3. Network architectures for single-object interactions (top) and for

paired-object interactions (bottom).

The same deep network structure is used to extract the corresponding symbols

with a slight modification to incorporate previously learned knowledge (Figure 4.3,

bottom). Here, an encoder f2 takes the depth images of the objects and produces a

binary latent vector z3. As the important point here, the single object symbols (z1

and z2) computed by the f1 encoder are also added to the network as input together

42

with the action information. The idea is that we can use previously acquired symbols

to encode new information more compactly, thus allowing a progressive increment of

symbols. Note that the encoder f1 is frozen at this second stage of the training. The

encoder f1 provides some interaction-related information about objects and lets the

encoder f2 focus and learn properties and relations between the objects.

Number of symbols is automatically set by selecting the number of bottleneck

neurons using a hyperparameter search procedure. To limit the number of rules and

predicates, this procedure aims to find the minimum number of symbols that provide

competitive performance in prediction. Starting from one unit, we record the mean

and the standard deviation of mean square errors (MSE) of multiple runs. We increase

the number of units until there is no significant drop in the prediction error. MSE

curves are reported in Appendix A.1.

4.3.3. Extracting Symbolic Rules

In the third part of the pipeline, a decision tree is trained to predict the effect

c of the stack action a given high-level single (z1 and z2) and paired (z3) object cate-

gories (i.e., the dataset is {[z(i)1 ; z
(i)
2 ; z

(i)
3 ; a(i)], c(i)}Ni=1). Here, the aim is to extract the

probabilistic rules of the environment by converting the decision rules on the paths of

the tree into logical statements, which ultimately enables probabilistic planning. Each

path from the root node to a leaf node in the decision tree stores the required set of

predicates {p1 = (z3 < 0.5), p2 = (z2 > 0.5), . . . } represented by discovered single and

paired-object categories (in the internal nodes) in order to achieve the effect category

c (in the leaves). In other words, each path corresponds to a set of preconditions in

order to reach a different effect. As the decision rules at each node in a path P are in

conjunction (p1∧ p2∧ · · · ∧ pk), and these paths are in disjunction (P1∨P2∨ · · · ∨Pm),

the tree represents a statement in disjunctive normal form. Thus, any statement in

propositional logic can be represented as a decision tree [102]. The class probabilities

at a leaf (the fraction of samples) correspond to probabilities of observing different

effects for the same set of preconditions. Therefore, each path is directly converted to

43

a different rule in probabilistic PDDL. While training the decision tree, the minimum

number of samples required for a node to be a leaf node is empirically set to 100 sam-

ples. The extracted rules are only limited to predicting the effects of an action. In

this way, the agent is not expected to learn representations (and consequently rules)

unrelated to its embodiment and actions. For example, in our tabletop environment,

the robot cannot differentiate cubes from vertical cylinders as different categories since

they respond similarly to similar actions, even though their visual appearances differ.

Our motivation for constructing PPDDL descriptions is to use probabilistic AI

planners to make plans and execute them efficiently. PPDDL is composed of a domain

description and a problem definition. In the domain description, there are predicates

and actions. Predicates represent boolean values that can be activated or deactivated.

Each action has a precondition, which is a set of predicates that needs to be satisfied,

and an effect, which activates/deactivates other predicates. The domain description

is generated from the list of rules. In the problem definition, the initial state of the

world is encoded along with the goal to be satisfied. To encode the initial state, the

robot perceives the current environment and sets the truth values of the predicates

for the existing categories. The planner finds the sequence of actions to satisfy the

predicates given in the goal description, starting from the initial state and using the

actions defined in the domain description.

4.4. Robot Experiments

In the following experiments, we aim to answer the following questions to evaluate

the proposed method: (i) Do the learned symbols hold any high-level meaning? (ii) Are

the learned symbols effective for symbolic planning? We compare our method with two

alternative baselines. The first one is an autoencoder with discrete activations where

symbols are learned directly from passively observed states, independent from actions

and effects. The second one is an encoder-decoder network with continuous activations,

followed by clustering in the latent space. Regarding the first question, we evaluate the

methods based on their performance in differentiating object categories. For the second

44

question, we evaluate the planning performance of different methods. The planning

performance is evaluated by the success rate of the plans generated by the learned

rules.

4.4.1. Experiment Setup

4.4.1.1. Interactions. We adopted the robotic setup, including the action and object

sets used, from Ugur and Piater [42], which showed effective skill transfer from the simu-

lator to the real world, involving actions with 3-fingered prehension. The experiments

are performed in CoppeliaSim VREP simulator [95] where a six-degrees-of-freedom

UR10 [96] robot arm and a Barrett Hand system [106] interacts with the objects on

the table, and a top-down facing Kinect sensor is used for environment perception (Fig-

ure 4.2). The objects used in the experiments include rectangular cups, horizontally

and vertically placed cylinders, spheres, and cubes. For each object type, ten different

objects with varying diameters/edge lengths in the range of 10 to 20 cm are included

in the object dataset for interaction.

4.4.1.2. Perception. Before each action execution, a top-down depth image (128× 128

pixels) of the scene is captured. Objects are placed at different reachable locations on

the table during the interactions to ensure the network is invariant with the perspec-

tive. Pixels of the images are normalized globally to increase the convergence speed

of stochastic gradient descent [94]. Objects in the image are detected with a simple

procedure by finding the point with minimum depth and cropping the area of 42× 42

pixels centered around it. This procedure yields object-centered representations for the

objects used in the current study but preserves the perspective distortion due to the

varying locations of the objects and fixed sensor position.

4.4.1.3. Encoder-decoder network. The encoder network (Figure 4.3) consists of four

blocks, each containing two convolutional layers that are followed by batch normaliza-

tion [8] and ReLU activation. The numbers of filters in these blocks are 32, 64, 128,

45

and 256. The last layer consists of two hidden units with a GS activation. The decoder

network is a two-layer MLP with 32 hidden units. Further details of these networks

can be found in Appendix A.1.

4.4.2. Discovered Object Categories

Based on the hyperparameter optimization procedure, the number of binary ac-

tivation neurons in the bottleneck layer is automatically set to 2; therefore, the system

found 22 = 4 object categories. How different object types (unknown to the robot) are

represented by the discovered object categories is analyzed and provided in Table 4.1.

In general, different types of objects were coded into different categories, except that

cubes and vertical cylinders share the same category even though their depth images

differ. This is due to our action and effect-regulated categorization: cubes and ver-

tical cylinders behave the same under all available single-object actions of the robot.

Although the depth images of the same type of objects with different sizes differ sig-

nificantly, this information is not reflected in the categories because the size of the

objects does not have a significant influence on the consequences of the current ac-

tions. The categories can be interpreted as ‘pushable’, ‘rollable in a single direction’,

‘pushable and insertable’, and ‘rollable in all directions’, respectively. Examples from

each category are shown in Figure 4.4.

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Figure 4.4. Example depth images as inputs to the encoder network f1.

46

Table 4.1. The relative assignment frequencies of objects to different symbols.

DeepSym

Category (0, 0) (0, 1) (1, 0) (1, 1)

Sphere 99.9 ± 0.2 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.0

Cube 0.0 ± 0.0 99.9 ± 0.2 0.0 ± 0.0 0.1 ± 0.2

Vertical Cylinder 0.0 ± 0.0 99.9 ± 0.2 0.1 ± 0.2 0.0 ± 0.0

Horizontal Cylinder 0.4 ± 0.9 3.1 ± 5.5 93.0 ± 4.7 3.4 ± 3.8

Cup 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0

Autoencoder (OBO)

Category (0, 0) (0, 1) (1, 0) (1, 1)

Sphere 60.6 ± 1.7 15.7 ± 5.0 15.0 ± 4.5 8.8 ± 3.2

Cube 37.4 ± 2.3 22.9 ± 3.1 19.3 ± 2.4 20.4 ± 4.3

Vertical Cylinder 44.0 ± 2.9 23.2 ± 5.7 19.4 ± 7.2 13.4 ± 3.1

Horizontal Cylinder 44.7 ± 2.9 20.0 ± 4.9 18.6 ± 3.7 16.7 ± 4.5

Cup 86.5 ± 2.0 4.3 ± 2.1 6.4 ± 2.3 2.8 ± 3.7

Continuous bottleneck + clustering (OCEC)

Category (0, 0) (0, 1) (1, 0) (1, 1)

Sphere 94.2 ± 9.4 4.0 ± 8.4 1.8 ± 5.5 0.0 ± 0.0

Cube 0.0 ± 0.0 99.0 ± 3.2 0.0 ± 0.0 1.0 ± 3.2

Vertical Cylinder 0.0 ± 0.0 98.5 ± 4.7 0.0 ± 0.0 1.5 ± 4.7

Horizontal Cylinder 28.6 ± 29.1 0.0 ± 0.0 63.4 ± 26.1 8.0 ± 16.9

Cup 0.0 ± 0.0 13.8 ± 32.5 0.0 ± 0.0 86.2 ± 32.5

As a baseline for comparison, we trained an autoencoder with a binary hidden

layer (similar to [76]) using Gumbel-Sigmoid to reconstruct the depth images of objects

(inputs to f1) instead of effects, dubbed as Object-Binary-Object (OBO). As a second

baseline, we trained our proposed encoder-decoder architecture with the binary bot-

tleneck layer replaced with a usual continuous layer that is applied k-means clustering

(k = 4) after learning. Let us call this approach Object-Continuous-Effect followed by

Clustering (OCEC).

47

The results are shown in Table 4.1. Here, objects vary in their sizes and initial

positions. The mean and the standard deviation of 10 runs are reported. For ease of

understanding, we name columns so that the category where spheres are mostly placed

is renamed to (0, 0), the category where cubes are mostly placed is renamed to (0, 1),

and so on. The naming convention also allows us to take an average across different

runs. For the autoencoder network (i.e., OBO), we see that objects are collapsed

primarily into one category. The robot is expected to predict the consequences of its

actions using these categories, and as shown, these categories are not distinctive to help

such prediction. With this, we verified the advantage of extracting the symbols from

the interaction experience of the robot that includes object-action-effect information,

i.e., from an object encoder-effect decoder network, rather than searching the symbols

in passively-observed static features.

OCEC gave better results compared to OBO since the bottleneck layer in OCEC

does include information from the effect space because of the predictive training similar

to our proposed model. However, the latent codes in the bottleneck layer of OCEC

might not be distributed locally, making clustering harder. When this is the case, we

need more complicated clustering algorithms, such as spectral clustering, to cluster

the latent space accurately. For example, in Table 4.1, we see that OCEC is more

biased toward misclassifying cups as the stable category and the horizontal cylinders

as spheres. When we take an average over all objects, our method predicts objects in

the correct category with 98.5 ± 0.94 % accuracy compared to OCEC with 88.3 ± 8.62

% accuracy.

4.4.3. Discovered Relational Categories

In the next step, we train a new pair of encoder-decoder network with the stack

interaction experience of the robot (Figure 4.3 bottom) while transferring the learned

object categories. By using the previously learned object symbols, the system is ex-

pected to learn symbols that the previous symbols do not capture. The number of

units is set to one using the parameter search defined previously.

48

Sphere Cube Cup

Sphere

Cube

V.
cylinder

H.
cylinder

Cup

Size of the object below

Si
ze

 o
f t

he
 o

bj
ec

t a
bo

ve

V.
cylinder

H.
cylinder

Figure 4.5. The encoder f2 activations (blue for 0, red for 1) for paired objects. Here,

x and y axes of each of the 5× 5 plots represent the sizes of the objects below and

above, respectively. Each square represents the relation for a given pair. Note that

without any direct supervision, the system discovers approximately linear boundaries

(e.g., the last column) for some object pairs that would help in effect prediction.

The response of the bottleneck neuron, i.e., how this neuron categorizes the input

object pairs, is analyzed in Figure 4.5. Given different pairs of objects with different

sizes, each image in this figure corresponds to a specific object pair, and each pixel

provides the response of the bottleneck neuron (0 or 1) for specific object sizes. In our

experiments, the effect of stack action depends on object categories and their relative

size. For example, if an object is released on top of a larger cup, the released object

drops into the cup. If the released object is larger than the cup, it is stacked on top of

the cup’s walls. The approximately linear boundaries for some object pairs in Figure

4.5 (for example, the last column) show that the bottleneck neuron captured these

dynamics and found a symbol that roughly encodes the relative size; the output is

one when the below cup is larger than the above object. In stacking interactions, the

relative size relation only makes sense when the object below is a cup, and our system

49

discovered this relational symbol. Another linear boundary found by the system is in

the bottom row. The output of the encoder is one when the above object is a cup

and below a specific size. We analyze the exploration data to understand why such a

boundary emerges. We found out that if the above object is a small cup, the change

in the position of the below object is very small.

The learned representations depend on the effect space and the action space of

the agent. In our example, after the single-object training stage, the system differen-

tiates different types of objects but does not differentiate different sizes of objects as

they are not sufficiently important for the prediction of push actions. Only after it is

trained with new data consisting of a new action, namely stacking, does the system

start to differentiate between different sizes of cups. The agent only learns richer repre-

sentations, and therefore better rules, when it has access to a richer action repertoire.

This is a desired property of our system as it learns a minimal set of representations

needed to predict the outcomes of its actions.

4.4.4. Discovered Effect Categories

After training, we pass the symbol space Z together with the action space A to

the decoder to get the effect categories. More specifically,

Csingle = g1(Zsingle,Asingle) (4.4)

Cpaired = g2(Zpaired,Apaired, (4.5)

where Zpaired is the Cartesian product of the object category space {0, 1}2 with the

action space Asingle = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} resulting in 12 different effect cate-

gories for the single object effects. For the paired object effects, the input consists of

two single object categories and one relational object category. Therefore, this num-

ber is {0, 1}2 × {0, 1}2 × {0, 1} × Apaired = 32. Here, Apaired only contains the stack

action, therefore n(Apaired) = 1. These effect categories for the single and the paired

interactions are shown in Figures 4.6 and 4.7, respectively. For visualization purposes,

we use colors to represent the third dimension. In Figure 4.6, the low force values are

50

in blue, and the high force values are in red. Likewise, in Figure 4.7, the low-depth

values are in blue, and the high-depth values are in red. We omit effects of the below

object (∆x2, ∆y2, ∆d2) in Figure 4.7 as they are almost zero. We see that the found

effect categories faithfully represent the effect space without any clustering.

(a)

(b)

Figure 4.6. Effect space for the single object interactions. The low force values are in

blue, and the high force values are in red. (a) Observed effects. (b) Found effects.

51

(a)

(b)

Figure 4.7. Effect space for the paired object interactions. The low-depth values are

in blue, and the high-depth values are in red. (a) Observed effects. (b) Found effects.

4.4.5. Learned Rules and PPDDL Operators

The single- and paired-object categories (acquired from the output of the en-

coder), together with the action vector, are used as inputs to the decision tree in order

52

to predict the effect categories (extracted from the output of the decoder). The learned

tree is of depth 5, has 24 leaves, and its classification accuracy is 94.8%. The result of

decision tree learning is shown in Figure 4.8a, where only a small number of decision

paths out of 24 is explicitly shown because of the space constraints. Decision rules

for the highlighted path is (f1(o1)1, f1(o1)2, f1(o2)1, f1(o2)2, f2(o1, o2)) = (1, 0, 1, 1, 0).

Here, (f1(o1)1, f1(o1)2) represents the category of the object above, (f1(o2)1, f1(o2)2)

represents the category of the object below, and f2(o1, o2) is the symbol for the paired-

object relation. A natural-language translation of this path is as follows: ‘If the above

object is rollable in all directions (1, 1), and the below object is pushable and insertable

(1, 1), and the below object is not larger than the above object, e2 is observed (which

is a stacking effect) with 0.959 probability’. PPDDL description corresponding to this

decision path of the tree is shown in Figure 4.8b.

For our experiments in the tower building task, we manually introduced some

auxiliary predicates, as well as special actions for the domain, to be able to chain

multiple actions and count the number of objects in the tower. These are needed to

set a goal of constructing a tower with multiple objects that are outside the robot’s

experience.

For effects with small ∆x1 and ∆y2, the aux-instack predicate is set to true

if they satisfy ∆d1 > ϵ for some threshold ϵ, and otherwise, the aux-height pred-

icate is set to true. For this specific application, these predicates allow us to dif-

ferentiate stacking and inserting—our effects of interest—from other effects. Actions

increaseheight1 and increasestack1 are treated as addition operators that increase

the height of the tower (H) and the number of objects in the stack (S), respectively.

There are multiple H and S predicates ranging from H1-H7 and S1-S7, and likewise

multiple increaseheight actions. When the aux-height effect is observed, the plan-

ner must select the increaseheight1 action to continue with the plan. Therefore,

when a stack effect is observed, the height of the tower (which is represented by H)

increases automatically. These would not be needed if we were to use the numeric

values associated with effect clusters (i.e., functions in PDDL). We went on with the

53

atomic effect representation (i.e., with no associated parameters) as they worked better

with the mGPT implementation that we used.

False True

TrueFalse

True

TrueFalse

e3 ; p=0.894
e2 ; p=0.106

f1(o2)1==1

f2(o1, o2)==1

f1(o1)1==1

stack21 stack22

stack23

False

stack19

f1(o1)2==1

f1(o2)2==1

f1(o1)2==1

e30 ; p=1.0

e2 ; p=0.959
e3 ; p=0.041

e18 ; p=0.956
e22 ; p=0.028
 e2 ; p=0.016

e22 ; p=0.906
e18 ; p=0.091
 e7 ; p=0.003

stack20

(a)

(:action stack21
 :parameters (?below ?above)
 :precondition (and (not (aux-height) (not (aux-instack))
 (pickloc ?above) (stackloc ?below)
 (f10 ?below) (f11 ?above)
 (relation0 ?below ?above))
 :effect (and (probabilistic
 0.959 (and (e2) (aux-height) (stackloc ?above)
 (not (stackloc ?below)))
 0.041 (and (e3) (aux-instack) (aux-height)
 (stackloc ?above) (not (stackloc ?below)))
 0.000 (e1)
 ..
 0.000 (e30)
 (not (pickloc ?above))))
(:action increaseheight1
 :precondition (and (aux-height) (H0))
 :effect (and (not (H0)) (H1) (not (aux-height))))

(:action increasestack1
 :precondition (and (aux-instack) (S0))
 :effect (and (not (S0)) (S1) (not (aux-instack))))

(:action makebase
 :parameters (?obj)
 :precondition (not (base))
 :effect (and (base) (aux-height) (aux-instack) (not (pickloc ?obj))
 (stackloc ?obj)))

(b)

Figure 4.8. An example expansion of the decision tree. On the leaves, each effect ei is

observed with the corresponding probability. (a) An example of a decision path and

(b) its translation to PPDDL description, color-coded to match the decision tree.

54

Lastly, the predicate pickloc is true for objects that are on the table and available

for use for the tower construction; stackloc is true for the object that is at the top of

the tower. These are shown in Figure 4.8b.

4.4.6. Performance of Planning

The PPDDL descriptions that are automatically constructed by the discovered

symbols and rules were verified by generating plans given a set of goals, executing these

plans in the simulator, and assessing the success of the executed action sequences in

achieving these goals. To be concrete, we asked the system to generate plans to create

towers of desired heights with a given fixed set of objects. The challenge of the task is

to place objects on top of each other in the correct order. With five objects, there are

5! plans. For plan generation, the mGPT planner is used [107].

Since in our experiments, the system is asked to generate plans given a number

of objects on the table, we encode the task of, say, “construct a tower with a height of

three (H3) using four objects (S4)” as H3S4 (Figure 4.9).

Figure 4.9. Top—The objective is to construct a tower of height five using five

objects, H5S5. The system assesses the success probability to be 0.07. Middle—The

objective is H1S4, and the system assesses the success probability to be p=0.76.

Bottom—If we change the objective to H4S4, the success probability increases to 0.88.

55

4.4.6.1. DeepSym vs. OCEC. We first compare our system with the alternative OCEC

system. We train both systems ten times and select the best-performing models (based

on the decision tree accuracy). We initialized 20 random problems and asked the plan-

ner to solve the task using two different domain descriptions generated from different

methods. We run the probabilistic planner 100 times for each problem and record the

number of successes to estimate the success probability of the plans. The results are

reported in Table 4.2. We report two different metrics: (1) planning success shows

whether the system generated a feasible plan or not, and (2) execution success shows

whether the execution is successful or not. The latter is concerned with the stochas-

ticity of the environment, not with the feasibility of the plan. We see that the OCEC

model performs considerably worse with 25% planning accuracy than our approach

with 95% planning accuracy. This is mainly caused by the wrong classification of the

cup object (see Table 4.1 in Section 4.4.2), which is an essential piece of information

in this problem. When single- and paired-object categories are incorrectly classified,

the system generates an invalid problem description, which results in infeasible plan

outputs. For the same number of symbols, the learned symbols in the OCEC pipeline

do not directly depend on the action and the generated effects, while symbols learned

with our architecture directly depend on the action and its corresponding effect as they

are directly used for effect prediction. This leads to the creation of symbols that are

more appropriate for planning.

Table 4.2. Planning results from random 20 configurations.

Method Estimated prob. Planning success Execution success

DeepSym 80.4 95.0 70.0

OCEC 12.1 25.0 15.0

4.4.6.2. DeepSym Performance. Now that we have shown the performance gap be-

tween the two methods, we want to analyze when our method fails and succeeds. We

considered four different goals (towers of heights from one to four) and performed 25

different runs with random initial object configurations for each objective. We con-

56

figured object types and sizes to have at least one feasible solution. For example, for

the H1 objective, we make sure that there are at least three cups that can be phys-

ically stacked into each other. The initial state and the final state of each problem

are provided in Appendix A.4. The plan execution performance is reported in Ta-

ble 4.3. There are three different outcomes: (1) the plan is executed successfully, (2)

the planner outputs an erroneous plan due to a recognition error in the encoder, (3) the

generated plan is correct, but the plan fails at execution time due to the stochasticity

of the environment.

We see that the robot constructs towers with a height of four successfully. As the

height of the tower decreases, the robot needs to insert some of the objects inside other

cups. The insertion task is harder than the stacking task due to the stochasticity of

the environment, which is also reflected in the estimated probabilities in Figure 4.8b;

even if the below cup is larger than the above sphere, the insertion probability is

0.894. For example, for the challenging objective of creating an H1 tower including

all objects, the system estimates the success probability to be 0.68 and, therefore, the

failure probability to be 0.32. Accordingly, 36% of plans fail at execution time. This

shows that the system can partially model the probabilistic nature of the environment.

The planning errors are mostly due to the incorrect recognition of the paired-object

categories. Example executions are shown in Figure 4.9.

4.4.6.3. Deterministic vs. Probabilistic Planning. We also experimented with deter-

ministic planning instead of a probabilistic one. To do so, while converting rules to

PDDL, we take the maximum likely effect as the generated effect. For example, if

a specific action schema produces effect e2 with a probability of 0.91 and e17 with a

probability of 0.09, we take the effect with the maximum probability as the generated

effect for the action schema. Thus, deterministic planning eliminates the possibility of

other effects and, therefore, effectively eliminates possible solutions. When the learned

rules faithfully represent the action-effect relations in the environment, we observe no

significant difference between probabilistic and deterministic planning in terms of the

success of plans. However, when there is significant inaccuracy in the learned repre-

57

sentation (e.g., an incorrect comparison between a pair of objects), the probabilistic

PDDL description can account for this inaccuracy in the probabilities of effects; the

inaccuracies are reflected as the uncertainty of the environment.

Table 4.3. Planning results from 25 executions for each task. To satisfy the H1S4

objective, the robot needs to insert objects inside each other, which is more

challenging compared to the other tower tasks. Thus, the success probability is lower.

Task H4S4 H3S4 H2S4 H1S4

Estimated execution probability 0.91 0.93 0.86 0.68

Success 0.88 0.56 0.68 0.32

Planning fail 0.12 0.20 0.20 0.32

Execution fail 0.00 0.24 0.12 0.36

4.5. Experiments on 8-puzzle

In this section, we evaluate DeepSym on the adapted MNIST 8-puzzle [76]. In

the original 8-puzzle, the aim is to have the tiles in a specific arrangement (considered

the goal configuration) by moving tiles into the empty square. In the adapted MNIST

8-puzzle version, tiles do not have symbolic values such as digits but instead contain

images of digits, and the 0-tile is treated as the empty tile. Given the domain definition,

i.e., the knowledge of how the configuration changes in response to slide actions, the

8-puzzle game can be solved with AI planners. However, the problem becomes non-

trivial when the states are represented with raw images of the board, and the state

transitions are not known. In the adapted MNIST 8-puzzle, our system is given the

raw image of the board with (3 × 28) × (3 × 28) = 7056 pixels. Therefore, the state

vector is 7056-dimensional. An instance of the MNIST 8-puzzle is shown in Figure

4.10.

A system that can solve the puzzle should recognize the following: (i) actions

only modify some part of the image (i.e., there are tiles), (ii) there are specific symbolic

58

representations in these tiles (i.e., recognize the image content of the tiles), and (iii)

the goal is only valid when these tiles are arranged in a specific order (sorted from left

to right and top to bottom).

As in our robot experiments, the general pipeline (Figure 4.1) consists of four

stages: (1) exploration, (2) symbol learning, (3) rule learning, (4) and the translation

of rules to PDDL.

slide-left slide-down

Figure 4.10. Two steps of the MNIST 8-puzzle. The 0-tile is treated as the empty

tile. Each tile consists of a 28× 28-pixel MNIST digit.

- =
xt+1 xt et- =

Figure 4.11. The effect is represented as the elementwise different of pixels between

two consecutive timesteps.

In the exploration stage, the system initializes a random environment configu-

ration, executes a random action (which is provided to the system), and records a

3-tuple (xt, at, et) where xt is the current state, at is the executed action represented

as a one-hot vector, and et is the generated effect represented as the pixel difference

59

between the new state xt+1 and the current state xt (Figure 4.11). We collect 100,000

such interactions from the environment.

In the symbol learning stage, we train an encoder-decoder network as in Section

4.3.2, where the encoder f(x) takes the state vector x as an image of 84 × 84 pixels

and outputs a binary vector z, and the decoder g(z, a) takes the concatenation of z

and the action vector a to produce the effect e which is also an image of 84×84 pixels.

Both the encoder and the decoder are convolutional networks. We did not employ

any hyperparameter search on the architectures but followed the building principles in

DCGAN [108]. The details of the networks can be found in Appendix A.1. We train

the model for 100 epochs with MSE loss in Equation (4.3).

After training, we distill the information in the decoder network into rules by

training a decision tree using the predictions of the decoder. Lastly, we translate the

rules represented by the decision tree into PDDL rules as in Section 4.3.3.

4.5.1. Learned Symbols

In the MNIST 8-puzzle environment, there is a finite set of possible effects that

can be generated in a single action from any environment configuration. If we use the

same image for a digit, then the encoder should represent 3248 different states (digits

that are near the empty tile) in order for the decoder to produce the correct effect.

Since we are using binary activations, log2 3248 ≈ 11.67 units are necessary to avoid

losing any information regarding effects. Therefore, we set the number of units to 13

(giving one more as a slack) in this experiment.

To understand the symbols that correspond to the low-level subsymbolic repre-

sentations (i.e., images), we sample 100,000 random states from the environment and

get their symbolic representations from the encoder. Then, we take the average of im-

ages that correspond to the same symbol. We show the average image that corresponds

to the top 30 symbols sorted by their activation counts in Figure 4.12. We notice that

60

the first nine symbols correspond to different locations of the empty tile (recall that

the digit ‘0’ is considered as the empty tile), which accounts for 41.5% percent of all

activations (i.e., in 41.5% of the time, the encoder only outputs the position of the

empty tile). Other symbols correspond to cases where the digit ‘3’ or ‘5’ is near the

empty tile.

Figure 4.12. Average states that correspond to the top 30 symbols on MNIST

8-puzzle (sorted by their activation count from left to right and top to bottom).

Prediction Truth

State[t]

Effect[t]

sli
de
_le

ft

slide
_do

wn

slide_right

slide_up

State[t+1]=State[t]+Effect[t]

Prediction Truth

Figure 4.13. Four different effect predictions are shown together with their ground

truths for different actions for a given state.

61

In Figure 4.13, some predicted effects are visualized for a given state and actions

together with the ground truth effects. We see that the decoder successfully models

the slide of the digit ‘0’. Combining the previous state with the predicted effect, we

can have an estimate of the next state shown in the right column in Figure 4.13.

(:action slide_left5
 :precondition (and (not (z9)) (not (z5)) (z3))
 :effect (probabilistic

 0.16667 (and (z0) (z1) (not (z2)) (not (z3)) (z4)
 (z5) (not (z6)) (not (z7)) (z8) (z9)

 (z10) (not (z11)) (z12))
 0.00758 (and (z0) (z1) (not (z2)) (not (z3)) (z4)
 (z5) (not (z6)) (not (z7)) (z8) (z9)

 (z10) (z11) (z12))
 0.68939 (and (z0) (z1) (not (z2)) (z3) (z4) (z5)
 (not (z6)) (not (z7)) (z8) (z9) (z10)

 (not (z11)) (z12))
 0.13636 (and (z0) (z1) (not (z2)) (z3) (z4) (z5)

 (not (z6)) (not (z7)) (z8) (z9) (z10)
 (z11) (z12))))

Figure 4.14. An example PPDDL rule generated from a decision path.

4.5.2. Learned Rules

To train a decision tree for the rule extraction, we collect the set of training ex-

amples as follows. Given the current state xt, the encoder generates the corresponding

symbol zt = f(xt) which is then used as input to the decoder together with the one-hot

action vector at to predict the effect: ēt = g(zt, at). Then, we predict the next state

xt+1 by summing the predicted effect ēt with the current state (x̄t+1 = xt + ēt) as in

Figure 4.13. Lastly, we use the encoder to generate the symbol z̄t+1 that corresponds

to x̄t+1: z̄t+1 = f(x̄t+1). The decision tree is trained with {[zt; at], z̄t+1} input-output

pairs. This is even more generic than robot experiments where we trained the tree with

{[zt; at], ct} pairs (ct is the effect category predicted by the decoder) since it allows us

62

to express the goal using the image modality. In both cases, the idea is the same: train

a decision tree with symbolic input-output pairs to learn probabilistic rules.

As the last step, we convert the decision paths of the tree into probabilistic PDDL

rules as in Section 4.4.5. As an example, a translated rule from a decision path is shown

in Figure 4.14 where predicates (z0) . . . z(12) correspond to activations of each unit

in z. There are no auxiliary predicates as there are in the tabletop environment; the

PDDL file only consists of such translated rules given above.

4.5.3. Planning Examples

Using the generated PPDDL description, our system is requested to output a

plan for the goal state from a random initial state. For this, the problem definition

(where the current state and the goal state are indicated) is created in PPDDL using

the activations of the encoder (see Figure 4.15).

Initial state

Goal state

Planner output: [slide_down, slide_left, slide_up]

En
co
de
r

En
co
de
r

(define (problem 8puzzle) (:domain 8puzzle)
(:init (z0) (z1) (z2) (z3) (z4)
 (z5) (z8) (z9) (z10) (z12))
(:goal (and (z0) (not (z1)) (z2) (z3) (z4)
 (not (z5)) (z6) (z7) (z8) (not (z9))
 (z10) (z11) (z12))))

Problem definition

Figure 4.15. The generated plan for the goal state.

As shown in the figure, our system was able to find the correct action sequences

in order to reach the given goal configuration. Note that we observed that the output

plan only slides the tiles so as to move the empty tile into the correct position. This

is a consequence of the system because the encoded activations do not represent the

63

global state but a local state: the position of the empty tile and its neighbors. One

can extend the locality by incorporating multiple timestep effects of actions [109].

Initial state Goal state Goal state

Planner output: [slide_down,
 slide_left,

 slide_up]

[slide_left] [slide_down,
 slide_down,

 slide_right]

Goal state

Figure 4.16. Three different goal positions and with planner outputs.

As the current formulation cannot capture the global state, we experimented with

local state representations. For example, in Figure 4.16, we set two different arbitrary

goals that are one step and three steps away from the initial state (the first and the

second goal in Figure 4.16). The planner outputs the correct plan since it can capture

the nearby tile information. However, when asked for the third goal in Figure 4.16,

the generated plan only moves the empty tile to the correct position while disregarding

other tiles. We argue that the global state might be captured by considering relations

between the local states of the tiles.

Table 4.4. The average percentage of successful plans that move the empty tile for

different plan lengths over five runs.

1-step 2-step 3-step 4-step

Random plans 24.4± 4.2 9.8± 2.3 11.4± 2.1 10.6± 4.0

DeepSym 92.6± 5.8 88.0± 8.6 88.8± 7.4 89.0± 7.9

We generated 100 random goal states that are n-step away from the corresponding

initial state and reported the planning results to quantitatively assess the performance

64

of the method. We also add the results for executing random actions to assess the

performance increment. We report the percentage of plans that successfully move the

empty tile to the correct position in Table 4.4. From the results, we see that DeepSym

can successfully move the empty tile into the correct position for different plan lengths.

(a) (b)

Figure 4.17. Example configurations for (a) 8-puzzle w/replacement and (b)

15-puzzle w/replacement. In these environments, each digit except ‘0’ may appear

more than once.

4.5.4. Scaling-up to 15-puzzle

This section aims to analyze the performance of the system when we scale up

the dimensionality of the environment. Examples in the previous section suggest that

our system can correctly identify the empty tile, learn the transition based on the

empty tile, and make plans to move the empty tile into different positions. We would

like to test whether this is the case for larger environments. Therefore, we scale up

the 8-puzzle in two different ways: (1) 8-puzzle with replacement (will be denoted as

w/r) and (2) 15-puzzle with replacement. Example configurations for each is shown

in Figure 4.17. Each digit except ‘0’ (the empty tile) may appear more than once in

these versions. We train DeepSym with 14 units for 8-puzzle w/r and with 15 units for

15-puzzle w/r (see Appendix A.3 for details).

65

Initial state Goal state Initial state Goal state

1 2

3

Figure 4.18. Planning results for 8-puzzle w/r and 15-puzzle w/r. The arrow denotes

the movement of the empty tile at each step.

66

The low-level state-space and effect-space are 112× 112 = 12544 dimensional for

15-puzzle w/r while it stays the same for 8-puzzle w/r. We used the same convolu-

tional architecture with different paddings to ensure the same output size. The most

frequently activated symbols are shown in Figures A.3 and A.4. We give the planning

results for these environments in Figure 4.18. We see that the system moves the empty

tile (by sliding other tiles) to the correct position but disregards other tiles.

4.5.5. Comparison with Autoencoder

This section aims to compare DeepSym with an autoencoder baseline. We train

an autoencoder (as in [76]) in these three MNIST n-puzzle environments with the

same architecture and the same number of bottleneck units as in DeepSym. Given

the bottleneck size, it would be impossible for the autoencoder to encode all state

space. The most frequently activated symbols for 8-puzzle and 8-puzzle w/r are shown

in Figures A.5 and A.6, respectively. We train a decision tree for rule learning using

the encoder activations to compare the planning performance. Namely, the decision

tree is trained with (f(xt), f(xt+1)) input-output pairs where f is the encoder network.

After the training, we extracted rules from all paths of the tree and constructed a

PPDDL description. The planner failed to produce any plan output for random initial

and goal states. This is expected since all the state space cannot be encoded, and

therefore, some states are not represented correctly in the PPDDL description. One

would need to increase the bottleneck size in order to convert all the state space into

PPDDL descriptions. In [76], the bottleneck size is set to 25 units (instead of 13 in our

experiments) to cover the state space.

4.6. Discussion

A plan corresponds to a sequence of actions to move from an initial state to a goal

state. One must chain the effects of actions to predict a future state. Thus, the effects

of actions should be known to generate a plan. Therefore, the capability of knowing

the preconditions of actions and predicting the effects of actions is a requirement for

67

generating a successful plan [39]. Our system realizes this requirement with a deep

neural network trained to predict effects of actions.

The main difference between DeepSym and approaches that focus on compressing

the state representation (e.g., with an autoencoder, [76], [78], or with a world model,

[41]) is that the learned representations in DeepSym are only due to actions and effects

of the agent [71]. Learning symbols based on the capabilities of the agent allows one

to filter out details of the environment not related to the agent. On the other hand,

the approach of compressing the state representation brings its own advantages. One

can use a large dataset of states to pre-train an unsupervised model to learn a compact

model of the environment and then use the learned model to train a supervised model

for planning or policy learning.

Finding action-independent discrete representations is non-trivial in a large state

space, even for the toy examples given in Section 4.5. In our robot experiments, the

autoencoder with discrete units [76] was shown not to generate a useful representation

with a low bottleneck dimension. On the other hand, DeepSym can learn useful and

compact representations for planning as it considers actions and effects. For environ-

ments that are more realistic for lifelong learning, such as Minecraft [110], the raw

state-space is virtually infinite, making it difficult to find a minimal set of meaningful

discrete representations without taking actions and action effects into account. On

the other hand, action- and effect-based learning allows for an efficient representation

of the state space by filtering out the aspects of the environment not relevant to the

actions of the agent. For example, in the 8-puzzle environment, the encoder disregards

the tiles not near the empty tile since the generated effect does not depend on them.

The learned representation allows for generating plans to move the empty tile to dif-

ferent positions. DeepSym learns the minimal set of representations that are needed

for the effect prediction of action. Therefore, our system learns action-centric repre-

sentations, i.e., representations that involve the empty tile. State- and action-based

methods are two different (possibly complementary) approaches with advantages and

disadvantages. For example, if the problem domain is small, or there exists a large-

68

scale pre-trained model of the environment, encoding all the state space will allow

one to solve any encountered problem. However, this approach might be infeasible for

larger domains. On the other hand, action-based encoding learns the minimal set of

symbols to predict effects at the cost of missing possibly global task requirements (e.g.,

a specific arrangement in 8-puzzle).

It is theoretically possible to learn a simpler feature-based representation that

will be more computationally efficient when compared with deep networks when state,

action, and observed effects are all known [42], [73]. However, this approach would

need manual feature extraction for newly encountered domains, while a differentiable

network that can be automatically tuned offers a more uniform and extendible ap-

proach.

One thing we observed is that with the narrow bottleneck size (i.e., 13 units for

3248 configurations), the encoder does not represent all the neighbor configurations that

are needed for effect prediction. However, when we increase the bottleneck size, the

encoder indeed learns all the necessary configurations. Even if the system successfully

encodes all the local states, it would still need to symbolically encode the global state to

solve the task globally. One approach to encoding the global state might be extending

the locality by considering the effects of multiple timesteps [109].

4.7. Conclusion

In this chapter, we introduced a method that discovers effect- and action-guided

object categories, encodes them as discrete symbols, and learns rules that predict ac-

tion effects. It sustains a general cognitive development progression where symbols are

formed, rules are learned, planning is achieved, and verified in execution. Our system

contributes to the state-of-the-art by showing the following desirable properties that

have not been achieved/shown simultaneously elsewhere. We proposed a generic, sin-

gle pipeline neural solution for mapping raw sensorimotor experience into the symbolic

domain. The proposed network allows progressive learning of increasingly complex ab-

69

stractions, exploiting previously learned abstractions as inputs. It is gradient-friendly,

so it can be incorporated into any gradient-based machine learning system for more

complex processing. When compared with the continuous bottleneck layer version of

our system, i.e., OCEC, our system performs better in effect category formation, lead-

ing to more successful action planning. This suggests that instead of post-training

clustering of the continuous unit outputs, employing discrete units from the beginning

is beneficial.

In this chapter, networks take a fixed number of objects as input (i.e., a single

object for push and two objects for stack) and predict their effects when an action is

applied. However, in the general case, we might not know in advance the number of

objects that an action is going to affect. In the next chapter, we extend the architec-

ture to handle the effects of a varying number of objects by taking into account their

relations in the environment using self-attention layers [26].

70

5. LEARNING MULTI-OBJECT SYMBOLS WITH

ATTENTIVE DEEP EFFECT PREDICTORS

5.1. Introduction

In the previous chapter, we have shown that the symbols formed with single-

object interactions can be used to bootstrap new symbols or rule formation while

interacting with two objects. However, the transition from a single object to two

objects required the construction of a new neural network. Furthermore, it was not

possible to learn symbols from interactions that involve a varying number of objects,

some of which may affect the action execution and others not.

In this chapter, we aim to remove these limitations by acquiring a single neu-

ral system in order to discover symbols based on the sensorimotor data generated

by the robot when it interacts with multiple objects with arbitrary multiplicity. To

this end, we propose a deep neural architecture that includes self-attentive layers [26]

with binary latent representations. We show the validity of the proposed architec-

ture in a simulated manipulation scenario where a robotic arm interacts with object(s)

while building symbolic representations. Most importantly, our system not only learns

object-specific symbols but also learns multi-object symbols that are formed on the

fly by automatically processing the related object symbols through the self-attention

mechanism. After learning, we investigated the formed symbols and observed that

they are effective in making effect predictions. We showed that the learned symbols

enable reasoning capabilities with multiple objects that may influence the interaction

dynamics in various ways.

5.2. Methods

The proposed architecture is shown in Figure 5.1. This architecture predicts the

effects of an executed action at a given state. The architecture consists of an encoder

71

f(x) with a binarized bottleneck layer, a decoder g(x), and an attentive module a(x).

We assume that we have an image segmentation module for cropping and tracking

objects through several timesteps. While this is a strong assumption, state-of-the-art

segmentation methods in computer vision can segment and track objects in complex

environments [111,112].

In the first part, the high-dimensional continuous state x is first partitioned into

segments (x1, x2, . . . , xk) using the segmentation module. As we expect to obtain re-

lational symbols that potentially encode information related to several objects, the

relative positions of the objects are important and need to be preserved while process-

ing image segments. In order not to lose the location information, here we concatenate

the location of each pixel in the cropped image as two additional channels. Then, each

segmented image (xi) is given as input to the encoder. The encoder consists of several

convolutional layers for processing high-dimensional visual input. For binarization at

the last layer of the encoder, we use the Gumbel-sigmoid function [51,52] for gradient

backpropagation. In the end, the encoder outputs a binary vector zi for each segment

xi. These binary vectors (zi) are expected to encode symbols that can encode one or

more objects and that are effective in predicting the effects of actions and, therefore,

multi-step planning.

i) segmentation ii) encoding

z1

z2

z3

action vector

a(x)f(x) g(x)

iii) self-attention

h1
h2
h3

iv) decoding

eff(x1)

eff(x2)

eff(x3)

object sym.

action vector

Figure 5.1. Attentive DeepSym architecture.

Each action is represented with a one-hot binary vector. Actions are assumed

to be high-level parameterized motion primitives. The action vector a is concatenated

with each zi separately. Concatenated vectors ((z1, a), (z2, a), . . . , (zk, a)) are given as

input to the attentive module. The attentive module consists of several self-attentive

72

layers [26] which allows the generated symbols (z1, z2, . . . , zk) to interact with each other

to generate (h1, h2, . . . , hk) that should hold relational information for accurate effect

prediction. Note that we assumed the existence of action primitives in this chapter.

These primitives can be learned with different motion primitive methods [100], [113,114]

and transferred from previous stages of development as we previously showed [43].

(a) (b)

Figure 5.2. The experiment setup. Six possible pick and release locations are shown

in purple in the synthetic camera image in (a). An example exploration with three

objects is shown in (b).

The self-attention operation allows each symbol to attend to other symbols to

form a new representation. Since the whole model is trained in an end-to-end fashion,

symbols are formed in such a way that they not only define the characteristics of the

cropped object but also contain information about relations with other objects. For

example, if a long stick is picked and released to a different location, and if there is a

small cube on top of the stick, then the position of the cube changes as well. To accu-

rately predict such relational effects, the model needs to encode information regarding

relations between objects. Self-attention seamlessly combines this information using

query-key-based attention operation [26].

73

As the last step, the decoder function predicts the generated effect for each seg-

ment. In our case, we represent the effect eff(xi) as the position displacement of the

ith object after the action. In our experiments, we directly retrieve the position dis-

placement from the simulator. However, one can use a more generic effect, such as the

change in pixel values [46]. The learned symbols heavily depend on the effect represen-

tation, and we treat effect representation as a separate problem. This chapter, instead,

focuses on creating an architecture that can learn symbols for a varying number of

inputs and predict action effects that would require processing relational information

between objects.

5.3. Experiments

5.3.1. Experiment Setup

The experiment setup is shown in Figure 5.2. This is a tabletop environment

where a UR10 robot arm picks up and releases objects at six pre-defined locations

shown in Figure 5.2a. Given six pick-up and six release locations, the total number

of high-level actions is 36. An example sequence of action executions is shown in

Figure 5.2b. The environment is initialized with one to three objects initially located

at the row closer to the robot body (see the top three purple dots in Figure 5.2a).

The robot perceives its environment with a depth camera located on top of the table.

The camera takes 256 × 256 pixels depth image. We assume that the robot has a

segmentation module that can crop and track the movement of objects. This can be

achieved with state-of-the-art slot-based models [111, 112]. In this chapter, we use

the segments provided by the simulator. An example crop is shown in Figure 5.1–

left. All crops are 64 × 64 pixels. Finally, in order to preserve object locations, the x

and y locations of each pixel in the cropped image are concatenated as two additional

channels.

The robot collects the interaction data set as follows. The environment is initiated

with k ∈ {1, 2, 3} objects where k is set randomly. The initial depth image xi of the

74

environment, together with its segmentation si, is recorded before taking any action.

Then, a random action ai is executed and position displacements of k objects ei =

([∆x1, ∆y1, ∆z1], . . . , [∆xk, ∆yk, ∆zk])i are recorded as the generated effects. Here, x

and y represent the pixel coordinates of the object’s center of mass, and z represents

the depth value obtained from the depth camera for the corresponding object. Note

that the length of ei depends on the number of objects. In total, 12,000 (xi, si, ai, ei)

tuples are recorded as the interaction data set. We use 10,000 samples for training,

1,000 samples for validation, and the remaining 1,000 samples for testing.

Figure 5.3. Effect prediction for different states.

We train the architecture in Figure 5.1 to predict the generated effects ei of an

action ai. The encoder f(x) consists of four convolutional layers with 64, 128, 256,

and 512 filters. Convolutional layers are similar to that of DCGAN [108] with a kernel

size of four, a stride of two, and a padding of one. After convolutions, we take an

average across height and width dimensions and project this fixed-size vector into an

8-dimensional vector. Lastly, we binarize the activations using the Gumbel-sigmoid

75

function for backpropagation [51, 52]. The self-attention module a(x) is a transformer

with four transformer encoder layers [26]. We use the default settings in PyTorch for

transformer layers [115]. The decoder g(x) is a multi-layer perceptron (MLP) with

three hidden layers, each containing 256 units. We use batch-normalization [8] in the

encoder and the decoder to increase the convergence speed. We train all modules in

an end-to-end fashion with Adam optimizer [7].

5.3.2. Effect Prediction

Our system predicts the continuous effect, i.e., continuous pixel position and

depth changes of objects, from learned discrete symbolic activations. It is neither

our aim nor possible to minimize the prediction error to zero, yet we need to make

sure that our system can make discover symbols that can make fairly good effect

predictions. Therefore, we analyzed the prediction error. After training, the mean

effect prediction errors on the test set are 8.6mm, 15mm, and 6mm for x, y, and z

dimensions, respectively. For comparison, the average changes of the corresponding

dimensions of objects in the effect set are 50mm, 68mm, and 10mm. As a result, we

can conclude that our system discovered symbolic representations that are effective in

predicting the effects of actions on single or multiple objects.

Next, we investigate whether our system discovered symbols that automatically

include information from action-relevant objects in multi-object settings and model

interaction dynamics of these objects. For this, we created a scenario where the ac-

tion applied to an object is the same, but the other objects in the environment are

arranged in different ways such that different effects are expected to be obtained and

are expected to be correctly predicted by our system. The action is to pick up a long

stick from one position and release it to another position, and two other objects are

placed in different configurations, as shown in Figure 5.3. In Figure 5.3, three differ-

ent example interactions experienced by the robot were shown in three columns. The

initial snapshot of each interaction is shown in the upper row, and the final snapshot

after action execution is shown in the bottom row. In all three cases, the robot picks

76

up the orange stick, moves it to one position right, and releases it (see the bottom-right

purple position in Figure 5.2a). Due to different initial configurations of the red and

green blocks, different effects are (expected to be) observed.

Table 5.1. Effect predictions for example cases in Figure 5.3. Units are in millimeters.

Green Cube Orange Stick Red Cube

Predictions

Case 1 (3, 6, -2) (-2, 192, -2) (4, -9, -1)

Case 2 (3, 8, 0) (-17, 196, 1) (-10, 180, -5)

Case 3 (-3, 210, -45) (4, 159, 8) (-30, 131, -20)

Ground truth

Case 1 (0, 0, 0) (0, 180, 0) (0, 0, 0)

Case 2 (0, 0, 0) (0, 180, 0) (-1, 176, 0)

Case 3 (102, 177, -75) (3, 180, 0) (2, 176, 0)

The effects predicted by our system, along with ground-truth effect values, are

provided in Table 5.1 for each interaction (case). The results show us that our system

was able to model relational information between objects and, therefore, made correct

predictions. For example, in Case 1, the system correctly predicted that only the

position of the stick changes. In Case 2, the position of the red cube also changes along

with the stick. And finally, in Case 3, the positions of both cubes change along with

the stick (in the same direction). This shows that our system learned symbols that

enable it to make high-level reasoning that involves multiple objects, such as “objects

on top of another object will move together with the object below”. We conclude that

self-attention in transformer layers indeed helps the binary symbols interact with each

other to predict the correct effect. In the previous chapter, DeepSym, the modeling

of such interactions was only possible at the input level by manually concatenating

the necessary object crops with a pre-defined number of objects. Here, due to the

self-attention layers, the model discovers symbols that automatically use the binary

activations of the related objects and disregards the activations of unrelated objects.

77

5.3.3. Learned symbols

The number of binary units in the post-encode bottleneck layer is set to eight

units; therefore, there can be at most 256 unique symbols. As we analyzed the acti-

vation frequency of these symbols, we observed that the most frequently activated 35

symbols cover 95% of the training set. The prototypical values, i.e., the average states

from samples that activate these 35 specific object symbols, are shown in Figure 5.4.

Only the symbols that are activated more than 100 times out of 28,607 samples (the

number of objects in 10,000 samples) are shown in the figure. As shown, these object

symbols encode the location of the object, the depth of the object, and the occlusion

information.

1.0

0.0

1

0

Figure 5.4. The average depth images for each symbol are sorted by their activation

count. The color bar shows the normalized depth value.

While a number of symbols are activated only for sticks or only for cubes, others

are activated for both cubes and sticks. For example, the symbol in the second row and

78

the first column is activated for both cubes and sticks (see samples in Figure 5.5). This

makes sense since the generated effect is the same in both cases; the robot cannot grasp

the occluded object and, therefore, cannot change its position. We can interpret this

as a ‘not graspable’ symbol. However, note that there is not a specific symbol for ‘not

graspable stick’ or ‘not graspable cube’ since it does not bring any additional advantage

in terms of effect prediction accuracy; the model can already predict the generated effect

(which is 0mm, 0mm, 0mm on average) without differentiating these two objects. We

can conclude that our system learned a minimal set of symbols that is required to

make predictions and reasoning, and these symbols were not only determined by the

available objects in the environment but also by the action capabilities of the robot.

1

0

Figure 5.5. Example images that activate the symbol ‘00011011’.

5.3.4. Planning with Discovered Symbols

In this section, we investigate the suitability of symbolic representations in mak-

ing multi-step plans. Although our system can predict the effects on objects given the

79

tabletop image and the action, here, we aim to acquire a full symbolic reasoning ca-

pability by learning and exploiting a transition model that predicts the next symbolic

state given the current symbolic state and the action. For this, we train a separate

network m(z) that predicts the next symbolic state given the current symbolic state

and the action (see Figure 5.6) using the discovered symbolic representations that were

presented in the previous sections. This network consists of two dense layers followed

by a single self-attention layer and another two dense layers. We train the network

with binary cross-entropy loss for each dimension.

z1

z2

z3

action vector

m(z)

z'1

z'2

z'3

Figure 5.6. Symbolic forward module. Given the symbolic representation of the

current state, this module directly predicts the symbolic representation of the next

state.

Such a network, after training, allows us to search for a goal symbolic state using

any tree search algorithm [102]. Figure 5.7 shows a plan generated and executed in

order to achieve a composite structure given as a goal. As shown, the learned symbolic

transition model could be used to generate feasible plans and, when executed, could

achieve the desired goal, indicating that multi-step predictions in the generated long-

horizon plan were correct. This example shows that the discovered symbols can be

used for training a forward symbol prediction model that allows for achieving goals via

tree search.

80

Initial state

Goal state

Figure 5.7. An example plan for an arbitrary goal state. In the fourth action, the

robot tries to pick and release from the top-right position to the bottom-left position,

which does not interact with any object.

5.4. Conclusion

In this chapter, we proposed and implemented a predictive encoder-decoder net-

work that utilized a binary bottleneck layer and, importantly, a self-attention mecha-

nism in order to discover symbols relevant for interacting with the environment of the

robot that hosts a varying number of objects. Through experiments with a simulated

manipulator robot, we showed that the robot acquired reasoning capabilities to encode

interaction dynamics of a varying number of multiple objects in different configurations

using the discovered symbols. For example, when queried, the robot could reason that

(possibly multiple numbers of) objects that are on top of another object would move

together if the object below is picked up, and the objects around would not move. We

showed that these reasoning capabilities were acquired by learning a minimal set of

81

symbols that are optimized for effect prediction in the ecological niche of the robot.

We also showed that the discovered symbols can be used for planning by training a

higher-level neural network that makes pure symbolic reasoning.

Even though the learned symbols allow for planning with a neural network, our

initial aim was to build rules from symbolic transitions that can be used for domain-

independent planning. Here, we cannot easily build rules as we do not have direct

access to relations between objects or symbols. For example, after training, we can

transform a set of pre- and post-conditions into symbolic transitions. However, these

transitions only make sense in the presence of relations between symbols; we would need

symbols that interact with each other so that we can successfully build rules without

overfitting them to data. One possible solution might be to deduce relations based

on the attention weights for each object. Yet, our preliminary experiments showed

that these values are generally distributed over multiple objects, and when we combine

attention weights for multiple layers, values are generally uniformly distributed over

all objects.

As we realized the main block prevented us from building rules defined over the

learned symbols, which is the lack of knowledge about relations between symbols, in

the next chapter, we explicitly build the architecture to output attention weights as

binary values, which are used as relational symbols between objects.

82

6. DISCOVERING RELATIONAL OBJECT SYMBOLS

WITH SYMBOLIC ATTENTIVE LAYERS

6.1. Introduction

In Chapter 4, DeepSym [46], we combined the two motivations: learning precondi-

tions and effects of actions with deep neural networks. In DeepSym, an encoder-decoder

network with a discrete bottleneck layer is trained to predict the effect of actions (Fig-

ure 6.1 – bottom left). However, the network can only handle a fixed number of object

interactions, restricting the types of relations that can be learned. This restriction

is lifted in Chapter 5, Attentive DeepSym [53] by introducing a self-attention mecha-

nism [26] to the architecture (Figure 6.1 – bottom right). As symbols interact with each

other using self-attention, the network can make accurate predictions for related objects

(e.g., on top of each other). Although this architecture is effective in making accurate

predictions for related objects through the learned multi-object symbols, it does not

reveal the explicit relations between objects. Furthermore, as the self-attention layer

is applied after discretization, the relational representational capacity of the model is

limited by the learned symbols.

In this chapter, we explicitly compute discrete self-attention weights from object

features and treat them as relational symbols between objects. Using these discrete

relations, we fuse object symbols in an aggregation function to produce a single rep-

resentation for each object, which is then used to predict the observed, potentially

multi-object effect. This results in a more powerful architecture, which we named Re-

lational DeepSym, that can explicitly output the relations between a varying number

of objects while enjoying other properties of DeepSym. Our experiments in a simulated

tabletop scenario show that (1) Relational DeepSym achieves lower errors than Deep-

Sym [46] and Attentive DeepSym [53] for different numbers of objects and actions, (2)

learns not only object symbols but also relational symbols. The rest of the chapter is

organized as follows: the problem definition and our assumptions are given in Section

83

6.2, the proposed model is explained in Section 6.3.1, and the differences with previous

DeepSym architectures are discussed in Section 6.3.2.

6.2. Problem Definition

From a developmental learning perspective, this chapter starts off with a basic

sensorimotor system [43], [116], where the robot can locate objects and pick and place

them on top of each other.

Consider an environment represented by a set of object features O = {o1, . . . , on}

where oi ∈ Rdo is a do-dimensional continuous-valued vector for the ith object’s fea-

tures and n is the number of objects which can vary through multiple environment

instances. Without any loss of generality, we define object features as the combination

of (1) the object type (e.g., short block, long block), (2) the position (x, y, z) and the

orientation (x, y, z, w) of the object, resulting in a total of eight dimensions for each

object. However, the method can be applied to any other modality type (e.g., images,

point clouds) by modifying the networks accordingly as long as the environment state

can be partitioned into a set of objects.

In our experiments, the robot has a single type of high-level action with different

parameterizations: pick-place(oi, ∆yi, oj, ∆yj) where oi and oj are the objects to be

picked up and the target object, respectively, and ∆yi and ∆yj are the y-axis pick and

release positions relative to the center of the object (Figure 6.2a). ∆yi and ∆yj can

take discrete values of {−1, 0, 1}, which correspond to 7.5cm left, center, and 7.5cm

right of the object center, respectively. This results in a total of 9n2 grounded actions

(i.e., actions with parameters) for n objects. The robot randomly picks a grounded

action, executes it in the environment, and observes the new environment state as

O′ = {o′1, . . . , o′n} where o′i ∈ Rdo is the new object features for the ith object.

The goal is to transform the state vector O = {o1, . . . , on} where each oi ∈ Rdo is a

feature vector describing object i into a set of object symbols Z = {z1, . . . , zn} and rela-

84

tional symbols Rk = {r(k)11 , . . . , r
(k)
nn} where zi ∈ {0, 1}dz is a dz-dimensional binary vec-

tor (i.e., an object symbol) for the ith object and r
(k)
ij ∈ {0, 1} is a binary value for the

kth relation between the ith and jth objects. Once we have a symbolic representation

Z, R of a given state O, we can transform the continuously represented interaction data

{O(i), a(i), O′(i)}Ni=1 into its symbolic counterpart, {(Z(i), R(i)), a(i), (Z ′(i), R′(i))}Ni=1, and

learn a set of symbolic transition rules (Z,R)
a→ (Z ′, R′) enabling domain-independent

planning with AI planners to achieve a goal state [39, 42], [46], [81], [117].

ii) Vanilla DeepSym iii) Attentive DeepSym

i) Relational DeepSym (ours)

o1
o2

on

e1
e2

en

Self
Attention

h1
h2

hn
f

z1, a
z2, a

zn, a

action

g

o1
o2 z

on
a

e1
e2

en

f g

action

e1

Object encoder

Relation encoder

action

h1

MLP

Aggregation

∑ rij zj = hi
j

_ h2

hn

o1
o2

on

z1, a
z2, a

zn, a

z1
z2

zn

g

fo

fr

e2

en
r11

rn1

r1n

rnn

R =

_
_

_

Figure 6.1. The proposed model is shown in the top panel. For comparison, we also

provide high-level outlines of DeepSym [46] and Attentive DeepSym [53] in the

bottom panel in (ii) and (iii), respectively.

To learn object symbols and relations between objects, we follow an objective

similar to previous studies [42], [46], [53] and train a model to predict the effect E =

{e1, . . . , en} of the executed action a where ei = δ(o′i, oi) is defined as the cartesian

position difference between o′i and oi before and after the execution of the action a. In

our experiments, we compare the effect prediction performance of the proposed model

with two related models, DeepSym [46] and Attentive DeepSym [53], in a simulated

tabletop environment.

85

6.3. Methods

6.3.1. Relational DeepSym

The top panel in Figure 6.1 shows a high-level overview of the proposed model.

The model consists of four main components: (1) an object encoder fo that learns ob-

ject symbols, (2) a relational encoder fr that learns relational symbols between objects,

(3) an aggregation function that combines information from multiple objects by multi-

plying object symbols with relational symbols, and (4) a decoder g that predicts effect

ei of the executed action a for each object i. As the whole architecture is differentiable

and trained in an end-to-end fashion to minimize the effect prediction error, we expect

the object and the relational encoders to learn to predict symbols and relations, which

is useful for the decoder to predict the effect.

To output a discrete vector without removing the differentiability, the activation

of the last layer is set to the Gumbel-sigmoid function [51, 52]. The Gumbel-sigmoid

function approximates a Bernoulli distribution by injecting noise drawn from the Gum-

bel distribution to the logits, which forces the model to output in the extremities (i.e.,

either very low or very high values) to send a signal in the presence of noise. The

object encoder fo outputs a binary vector zi for the ith object given its features oi:

zi = fo(oi). (6.1)

In our experiments, fo is a multi-layer perceptron; however, other differentiable ar-

chitectures can be used for different modalities (e.g., convolutional layers to process

images)

The relational encoder takes object features {o1, . . . , on} as input and processes

them independently to output query and key vectors {(q1, k1), . . . , (qn, kn)} for each

object. As in the object encoder, the relational encoder is a multi-layer perceptron with

two different outputs for the query and the key. Note that multiple heads R1, R2, . . . , Rk

can be used to model different relations between objects. Let Q and K be n×d matrices,

each row containing a query vector qi and a key vector ki, respectively. Then, the

86

attention weight matrix R with size n× n where rij is the (directed) relation between

objects i and j—treated as relational symbols in this chapter—are computed as follows

qi, ki = fr(oi) ∀i ∈ {1, 2, . . . , n} (6.2)

R = GumbelSigmoid

(
QKT

√
d

)
, (6.3)

where d is the dimensionality of the query and key vectors. This is slightly differ-

ent from the regular self-attention function [26] in which the softmax function is used

instead of the Gumbel-sigmoid function. This modification creates two different be-

haviors: (1) the use of a sigmoid function instead of a softmax function allows multiple

attention weights to different objects to be active at the same time (whereas in softmax,

attentions compete with each other), and (2) the use of the Gumbel-sigmoid function

discretizes the attention weights while preserving differentiability, allowing us to treat

the weights as relational symbols between objects.

In the third step, the aggregation function combines object symbols {z1, . . . , zn},

relational symbols {R1, . . . , Rk}, and the executed action a to produce a single repre-

sentation for each object. The aggregation function has the following steps:

ai = [(1, ∆yi)oi=pick, (1, ∆yi)oi=place] (6.4)

z̄i = MLP(zi, ai) (6.5)

Hj = RjZ̄ (6.6)

H = (H1, H2, . . . , Hk) (6.7)

for i ∈ {1, . . . , n} and j ∈ {1, . . . , k}, where object symbols and the action vector are

concatenated in Equation (6.5), and the aggregation occurs in Equation (6.6). To con-

catenate action-specific information to each object symbol zi in a permutation-invariant

way, we define a 4-dimensional vector ai in Equation (6.4) for each object i in which the

first and the third dimensions are set to one if object i is the picked or placed object,

respectively. For example, consider the action in Figure 6.2a, pick-place(o3,−1, o0, 0),

which translates as “pick up o3 from its left and place it on top of o0”. Here, a3 and a0

are set to [1,−1, 0, 0] and [0, 0, 1, 0], respectively, and a1 and a2 are set to zero vectors.

One can possibly aggregate the input multiple times by applying Equation (6.6) more

than once to model longer effect chains. In our experiments, we use a single aggrega-

87

tion step. Multiple combinations from multiple attention heads are concatenated in

Equation (6.7) to produce a single representation hi for each object.

As the final step, the decoder takes the aggregated representation hi as input

and predicts the effect ê for each object for the executed action a. The decoder is a

multi-layer perceptron. The predicted effect is then compared with the ground truth

effect e to compute the mean squared error:

L =
1

M

M∑
j=1

N∑
i=1

(ê
(j)
i − e

(j)
i)2, (6.8)

where M is the batch size, and N is the number of objects.

6.3.2. Comparison with Related Models

As in DeepSym (Figure 6.1 – bottom left), this architecture is also an encoder-

decoder architecture with discrete bottleneck layers. The difference is that the informa-

tion between objects is shared in the aggregation function using the learned attention

weights for a more accurate effect prediction for actions involving several objects. In

DeepSym, this can only be achieved by fixing the number of input objects, whereas

there is no such limitation in the proposed model.

Regarding the Attentive DeepSym architecture [53] (Figure 6.1 – bottom right),

the most significant difference is the placement of the self-attention module. In the

previous study [53], the self-attention module takes object symbols (the encoder’s out-

put) as its input and directly outputs the aggregated representation. This restricts the

model from learning attention weights only from the learned symbols. In this proposal,

attention weights are learned from object features, making relations more general.

The second significant difference is the explicit use of attention weights. In the

previous study [53], attention weights are used within the self-attention layer as in the

original Transformer architecture [26]. However, since attention weights are continuous,

they cannot be easily expressed as relational symbols between objects.

88

6.4. Experiments

6.4.1. Experiment Setup

6.4.1.1. Environment. We created a tabletop object manipulation environment for

our experiments (Figure 6.2). The environment consists of a UR10 robot and two to

four objects. These objects are either short blocks or long blocks with their physical

properties (e.g., size, mass, friction coefficient) fixed through the interaction phase.

The robot has a single type of high-level action: grasping and releasing an object on

top of or near another object. We assume that object positions can be recognized

by a separate module, and the robot can track the cartesian position change of these

objects. What is to be learned is the effect of the executed action on each object in

different configurations.

In our experiments, we first collect a fixed-size dataset required for the training by

interacting with the environment and then train the model. Note that this procedure

can be turned into a buffer-based training where the model training and the data

collection are done in parallel, similar to many reinforcement learning setups.

6.4.1.2. Data Collection. At each iteration of the exploration process, the robot picks a

grounded action a, i.e., a specific parameterization of the action such as pick-place(2,

-7.5, 1, 0.0), and executes it in the environment to observe effect ei of action a on

each object i. Object features before the execution of the action are recorded as

the state vector. Here, object features are object types and poses with respect to

the object frame that is going to be picked, which allows models to generalize to

different object positions. Effects are the concatenation of (1) the position change of

objects after the pick-up action, and (2) the position change of objects after the release

action: ei = [δ(o′picki , opicki), δ(o′placei , oplacei)] resulting in a 6-dimensional vector for each

object (Figure 6.2b). Such an effect representation filters out the movement effect

of the object from the source location to the target location. In this way, the effect

representation models what happens ‘immediately after the pick-up’ and ‘immediately

89

after the release’ actions. Object and effect representations might have been selected

as raw images as in Chapters 4 and 5; however, we opt for a simpler setup to compare

different architectures in a controlled environment.

x

y
z

{-1, 0, 1}
∆yyellow

∆yblue
{-1, 0, 1}

x

y
z

e3

e3
place

e1

e1

pick

pick

place

(a) (b)

Figure 6.2. An example interaction with the environment. Two objects are selected

as pick and place targets. Green and red arrows show possible grasp and release

locations, respectively. (a) pick-place(o3,−1, o0, 0). (b) An example effect.

To compare different architectures in different settings, we collected three datasets

that contain exactly two, three, or four objects. We combine these datasets to create

a fourth dataset that contains a varying number of objects. Each dataset contains

({o1, o2, . . . , on}, a, {e1, e2, . . . , en}) triplets where n is the number of objects. We collect

120K samples for two objects, 180K for three objects, and 240K for four objects. We

use 80% of samples for training, 10% for validation, and 10% for testing.

6.4.1.3. Baselines. We compare our method with DeepSym [46] and Attentive Deep-

Sym [53]. As the vanilla DeepSym architecture requires a fixed-size input and output,

we modified it to make it suitable for our experiments. Namely, a maximum number

of objects is determined for a given training session. Then, the input (and the output)

90

vector is reshaped into [ograsped, oreleased, orest] where ograsped and oreleased are the object

features of the grasped and released objects, respectively, and orest is the object features

of the remaining objects.

6.4.1.4. Training Details. All architectures are trained with the same hyperparameters

throughout the text unless mentioned otherwise. We train models for 4000 epochs with

five repetitions with different seeds. Adam optimizer [7] is used with a batch size of

128 and a learning rate of 0.0001. All network components (e.g., encoder, decoder)

consist of two hidden layers with 128 hidden units. The number of attention heads for

attentive models is set to four. We clip gradients by their norm to 10.

6.4.2. Effect Prediction Results

Firstly, we compare effect prediction results for different datasets in Table 6.1.

The reported results are absolute errors summed over all dimensions (three dimensions

for the pick-up effect and three dimensions for the release effect). The results show

that the proposed method achieves significantly lower errors than others. Moreover,

the variance is lower than others, indicating that Relational DeepSym is more robust

to different seeds.

Table 6.1. Effect prediction results averaged over five runs. Units are in centimeters.

Dataset DeepSym Attentive Relational

Two objects 2.22 ± 0.56 0.89 ± 0.10 0.50 ± 0.03

Three objects 3.06 ± 0.16 2.55 ± 0.09 1.67 ± 0.02

Four objects 4.26 ± 0.68 2.75 ± 0.12 2.00 ± 0.04

Two to four objects 2.38 ± 0.25 1.86 ± 0.12 1.35 ± 0.04

Errors increase as the number of objects increases. This is expected since the

number of unique effects increases with the number of objects as the robot creates

more complex structures in random exploration. Choosing the exploration schedule in

91

a guided way, similar to experience replay in reinforcement learning [118], would be a

promising future direction.

0.2 0.4 0.6 0.8 1
Dataset percentage

0

2

4

6

Er
ro

r (
cm

)

DeepSym
Attentive
Relational

1 2 3 4
Number of Attention Heads

1.0

1.5

2.0

2.5

Er
ro

r (
cm

)

Attentive
Relational

(a) (b)

Figure 6.3. Prediction errors for different models as the number of samples (a) and

attention heads (b) increase.

To compare the sample efficiency, we train each model on a subset of the full

train set that is composed of interactions with two to four objects (432K samples

in total) and evaluate the effect prediction performance on the full test set. Figure

6.3a shows the prediction errors over five runs for different models as the number of

samples increases. Each model is trained for 1000 epochs except for the full train set,

where we train for 4000 epochs. The results show that the performances of Attentive

DeepSym and Relational DeepSym increase in a similar fashion with the increasing

sample size. However, the overall performance of Relational DeepSym is better than

Attentive DeepSym on all sample sizes. This suggests that a bottleneck (in this case,

the discrete representation) with a set of object symbols and relational symbols is

more sample-efficient than one with only object symbols. In Attentive DeepSym, the

bottleneck is essentially a set of object symbols and relations are implicitly learned

from these symbols (see Figure 6.1 – bottom right). On the other hand, in Relational

DeepSym, the object and the relational symbols are processed independently from each

other (fo and fr in Figure 6.1 – top) and combined in the aggregation function. This

allows the model to represent the environment with more symbols.

92

DeepSym Attentive Relational Final State

Initial state Final state

a1 a2 a3

Figure 6.4. Action sequence prediction results for different models. Top – An example

action sequence is shown with the initial state in the first image and the ground truth

final state after executing the action sequence in the fourth image. Rows 2-4 – The

final object positions predicted by each network are shown with a transparent color.

Next, we analyze the effect of the number of attention heads on the prediction

performance. Figure 6.3b shows the prediction errors for Attentive and Relational

DeepSym for one to four attention heads. We see that the performance of Attentive

DeepSym remains the same for different numbers of heads. As the discrete bottleneck

in Attentive DeepSym is not relations but object symbols, the number of attention

heads does not affect the effect prediction accuracy. However, the performance of

Relational DeepSym increases with the increasing number of attention heads and thus

the number of relations since the model capacity increases with multiple relations in

the aggregation step. The number of attention heads is a hyperparameter that needs

to be tuned for each problem by finding the plateau in the performance, as done in

DeepSym [46] for the dimensionality of object symbols.

93

1 2 3 4 5
Number of actions

0

2

4

6
Er

ro
r (

cm
)

DeepSym
Attentive
Relational

1 2 3 4 5
Number of actions

0

2

4

6

Er
ro

r (
cm

)

(a) (b)

1 2 3 4 5
Number of actions

0

2

4

6

Er
ro

r (
cm

)

1 2 3 4 5
Number of actions

0

2

4

6
Er

ro
r (

cm
)

(c) (d)

Figure 6.5. Prediction errors for different models as the number of actions increases.

(a) Two objects, (b) three objects, (c) four objects, (d) two to four objects.

6.4.3. Action Sequence Prediction

In this section, using the effect predictions {ê1, . . . , ên} of models, we predict the

next state {ô′1, . . . , ô′n} by adding the prediction back into the position part of the state

vector. Firstly, the predicted pick-up and release effects are summed with the state

vector. Then, the movement from the pick-up position to the release position is added

for objects that are predicted to be picked up. This way, given an initial state, we can

predict the final state the robot reaches after executing a sequence of actions. Here,

the challenge is to understand what happens when an object is lifted and released on

top of another object in the presence of multiple objects.

94

Figure 6.4 shows action sequence prediction examples. Relational DeepSym’s

predictions are more accurate than others, especially in the z-axis, the most significant

axis in these experiments. This shows that the proposed model understands that the

presence of an object on top of another object will change the action results.

In Figure 6.5, we analyze how models perform as the number of actions increases.

We see that Relational DeepSym shows a slightly lower error than others. Errors

increase for all models when the number of actions increases. This is an expected result

since we add the effect prediction back into the state vector, effectively cascading the

error over multiple steps.

6.4.4. Comparing Different Activations for Relations

In this section, we compare the performance of the Gumbel-sigmoid activation

used for learning relational symbols with sigmoid, softmax, and Gumbel-softmax func-

tions. Although Gumbel-sigmoid is also used for learning object symbols as well, we

rather focus and ablate on the relational part. We train a Relational DeepSym model

with the same hyperparameters as in Section 6.4.1 except for the activation function

used in Equation (6.3) to compute object-object relations.

Table 6.2. Effect prediction results with different activation functions for relations.

Units are in centimeters.

w/o rounding w/ rounding

Gumbel-sigmoid 1.34 ± 0.09 1.83 ± 0.41

Gumbel-softmax 1.66 ± 0.16 2.70 ± 0.61

Sigmoid 1.32 ± 0.04 24.03 ± 3.71

Softmax 1.35 ± 0.03 23.26 ± 2.83

We report errors on the test set for different activations in Table 6.2. Since

learning a symbolic definition of the environment is a requirement that we want to

95

satisfy to enable domain-independent planning with off-the-shelf AI planners [39, 42]

[46], [81], [117], we can only use discrete outputs that are rounded to either zero or

one at inference time. As such, we report two different results: (1) without rounding

and (2) with rounding. The results show that using Gumbel-sigmoid for learning

relational symbols achieves lower errors in terms of effect prediction. This is expected

since Gumbel-sigmoid is designed to approximate a Bernoulli distribution, which is

in accordance with the distribution of pairwise relations; an object-object relation is

either active or inactive.

6.5. Conclusion

In this chapter, we proposed a new method to simultaneously learn object symbols

and relations between objects in a single architecture. Namely, discrete attention

weights are computed from object features to model relations between objects. As

these weights are discrete, they can be regarded as relational symbols between objects.

Such a feature is desirable because it allows us to model the environment with object

symbols and relations between objects, which was not available previously [46], [53].

We showed that the proposed model achieves significantly lower errors than others in

predicting the effects of (possibly a sequence of) actions on a varying number of objects

and produces meaningful symbols that allow us to model the relations between objects

for settings where the number of objects can vary. In Chapter 8, we will show how to

convert the learned symbols into PDDL operators [119] for domain-agnostic planning

with off-the-shelf planners. But first, in the next chapter, we will focus on how to learn

high-level skills from parameterized actions, an assumption we took for granted up to

these chapters.

96

7. LEARNING SYMBOLIC SKILLS FROM

PARAMETERIZED ACTIONS

7.1. Introduction

In the previous chapter, we focused on learning object symbols and relations

from the continuous interaction experience of the robot. The robot interacted with

its environment using pre-defined high-level movement primitives, such as picking and

placing an object. It was assumed that such primitives could be bootstrapped from

motor babbling data [43] or can be learned from expert demonstrations [100,101].

In this chapter, we show how Relational DeepSym architecture can be extended

to bootstrap the robot with high-level skills that can be used in further stages of

learning to interact with the environment. This will ultimately allow the system to start

from very little knowledge and engineering (only the assumption of recognizing object

positions), develop high-level representations that are in line with its embodiment and

environment, and use them for domain-independent planning. Effectively, the system

converts its continuously represented sensorimotor information into domain-specific

elements.

7.2. Problem Definition

We start off with the assumption that the robot is equipped with a set of con-

tinuously parameterized object-oriented actions A = {a1(θ, o), . . . , ak(θ, o)} where o is

the object defining the center frame of the action and θ ∈ Rd is the parameter vector

of the action defining the trajectory in cartesian space that the robot follows:

a(θi, oj) = (p1, . . . , pn)θi,oj . (7.1)

Here, pi is a three-dimensional point in cartesian space. We can sample different

parameterizations of the action by sampling θ from a uniform distribution. There

97

may be more than one type of parameterized action. In this chapter, we consider a

single type of parameterized action defined by three via points, an anchor position (in

our case, object position), and a grasp state. We are interested in learning a set of

parameterizations {θ1, . . . , θm} such that these parameterizations maximally cover the

effects in the data set constructed by executing actions with random parameterizations.

Movements defined by these parameterizations are treated as skills learned by the robot.

For instance, consider a robot pushing an object. Once the position of the object

and the desired angle for push is determined, it is quite trivial to generate the trajectory

that the robot follows to push the object. Parameters such as object positions, push

angles, grasp points, via points, and so on are continuously defined values that allow

us to bridge the low-level motor commands with the task space.

Note that here, we have a more generic action definition than pre-defined actions

used in previous chapters; the current formulation defines a continuous action space,

which prevents us from searching since branches of a node would not be finite.

7.3. Methods

7.3.1. Learning Object and Action Symbols

Figure 7.1 shows the outline of the proposed architecture for learning skills to-

gether with object symbols. The architecture is an extension of Relational Deep-

Sym [55] (compare with Figure 6.1) where there is an action encoder fa (in addition

to object encoder fo and relation encoder fr) for transforming action parameters into

symbolic outputs with Gumbel-sigmoid function for preserving differentiability [51,52].

As in Chapter 6, we use object and relation encoders, fo and fr, for learning

symbols required for predicting the effect of the action. Previously, as the robot had a

finite set of actions that it could apply on objects, we directly concatenated the one-

hot enumeration of the action to object symbols {z1, . . . , zn}. Since the action space

98

is now continuous, we cannot directly concatenate its parameters since doing so would

prevent us from converting the collected data into a symbolic data set. Therefore, as

object symbols and relations are discrete (which constitute nodes of the search tree),

we need a symbolic counterpart of the action (which would be the edges of the search

tree). The action encoder fa serves this purpose by transforming action parameters

into a discrete output. The action encoder takes the acted object oj as input, and its

output pj is concatenated to object oj’s object symbol zj. For other object symbols,

we concatenate a zero vector with the same length.

x1

xn

x2

fo

fr

…

…

z1

z2

zn

r11, …, r1n

…

h1
h2

…

hn

e1
e2

…

en

; 0

; 0
g

fa

(a, o2, θ)

; p2 = fa(a, θ)

r21, …, r2n

rn1, …, rnn

Figure 7.1. The outline of the architecture for learning skills.

Object symbols {z1, . . . , zn}, relations {. . . , rij, . . . }, and the action symbol p is

aggregated as in Section 6.3.1 which results in a fixed-size vector hi for each object i.

The decoder g predicts effect êi for each object, and the whole architecture is trained

to minimize the following objective:

L =
n∑

i=1

∥êi − ei∥2. (7.2)

99

Require: fa, nsample, niter, nmin η, O, τ

θ∗ ← {}

for each p in O do

θ ← {}

for i in nsample do

θ[i]← get random parameterization()

end for

for i in niter do

L ← ∥fa(θ[i])− p∥2

θ[i]← θ[i]− η∇θ[i]L

end for

θ∗[p]← {}

for i in nsample do

if ∥fa(θ[i])− p∥ ≤ τ then

θ∗[p].append(θ[i])

end if

end for

if length(θ∗[p]) > nmin then

θ∗[p]← mean(θ∗[p])

else

θ∗[p]← null

end if

end for

return θ∗

Figure 7.2. Extract parameterizations from the action encoder.

The action encoder should produce such action symbols that when used together

with object symbols and relations, the effect space should be maximally covered. Intu-

itively, the action encoder should cluster the action space in a way that actions bound

100

with the same symbol should produce similar outputs when given the same object

symbols and relations.

7.3.2. Extracting Skills from Action Symbols

After training the architecture, we can convert state X and action (a, o, θ) into

their symbolic counterparts Z = {z1, . . . , zn}, R = {. . . , rij, . . . }, and p. Once we

convert and build rules defined over these symbols, we can search for a plan (an action

symbol sequence) P = (p(1), . . . ,p(k)} that would reach a goal state Xg from an initial

state Xi. However, even if we find the correct action symbol sequence, we cannot exe-

cute them in the environment as their parameterizations are not known. In Algorithm

7.2, we show a procedure to extract parameterizations for each action symbol that can

be later used for action execution.

We start by enumerating all possible outputs that fa generate—all da-dimensional

binary vectors where da is the output dimensionality of fa. For each enumeration p (a

grounded symbol), we optimize randomly sampled parameterizations in the direction

that would drive them towards p. This can be thought of as moving parameterizations

to each grounded symbol’s prototype vector. Then, we take a mean of samples that

are below an error threshold τ and record them as the learned parameterizations.

7.4. Experiments

7.4.1. Experiment Setup

Our experiments are done in a tabletop setup with four types of objects: small

cubes, large cubes, long cubes, and boxes. Each environment instance starts with four

to six random objects. A UR10 robot is equipped with a single action parameterized

by (1) an anchor position and (2) three via points. We assume that we can detect

objects’ positions and set the center of an object as the anchor position. Via points are

four-dimensional vectors where the first three dimensions define the relative cartesian

101

distance from the anchor, and the fourth dimension defines the open/close state of the

gripper before moving to the via point. Via points are sampled from three different

boxes with 15x15x15cm sizes shown in Figure 7.3. This results in a quite large action

space.

Figure 7.3. An example parameterized action from the exploration process. Blue,

green, and red shaded areas show the sample space of via points when o5 is taken to

be the anchor object. θ1, θ2, and θ3 are the sampled parameters.

In the data collection process, the robot randomly picks a target object and a

random parameterization of the action. The state information, which consists of each

object’s position, orientation, size, and whether the object is touched by the gripper or

102

not (12 dimensions in total), is saved before the action as X. Then, the robot executes

the action and saves the state after the execution as X′. This results in the following

data set: D = {X(i), (a, o, θ)(i),X′(i)}Ni=1.

We collect 200K samples and use 80% for training the method. The model is

trained for 1000 epochs with a batch size of 200 and a learning rate of 1e-5 using Adam

optimizer [7]. Each MLP block consists of four layers with 128 hidden units. The

output dimensionality of the object and the action encoders, as well as the number of

attention heads, are set to four. In order to prevent large steps in the training, we clip

the global norm of all gradients by 100.

Figure 7.4. Three example parameterized actions found with Algorithm 7.2 after

training the network. Top – empty action, middle – push, bottom – grasp.

7.4.2. Learned Action Parameterizations

After training the network, we extract parameterizations from the action encoder

using Algorithm 7.2. As we set the action encoder’s output dimensionality to four,

there can be at most 16 unique symbols and, thus, 16 distinct parameterizations. In

Figure 7.4, we show example parameterized actions in each row. Note that these pa-

103

rameterizations are not optimized based on a specific objective but rather exemplars—

prototypes—of the exploration data. In other words, we do not force the system to

find parameters that would increase a specific value, a reward, or the interaction with

objects. Nevertheless, we see that some of the found parameterizations are useful for

interacting with objects, which is expected since the randomly collected dataset also

contains interactions with objects.

Figure 7.5. The evolution of the environment through time.

To show the usefulness of the found parameterizations, in Figure 7.5, we show an

example exploration process by executing only parameterizations that mimic ‘grasp’

and ‘release’. Each row shows the change in the environment through time while the

robot interacts with objects. This shows that the found parameters can be used to

bootstrap the agent with useful skills, enabling the robot to interact with its environ-

ment to collect new experiences for further stages of learning.

7.5. Conclusion

In this chapter, we showed how Relational DeepSym architecture can be extended

to learn high-level skills from continuously parameterized object-oriented actions. This

104

essentially shows that the original ‘the robot has pre-defined actions’ assumption can

be addressed as some of the found skills (push, grasp, release) are used in the previous

chapters to learn object symbols.

Nevertheless, we would like to mention that finding useful skills that interact with

objects while keeping the sample complexity at a reasonable level is only possible if

we keep the search space small. For this reason, object-oriented parameterizations are

strong candidates as they only require locating interactable entities in the environment,

which might be achieved with depth cameras. With similar motivation, in a related

work [120], the learning part of the manipulation is kept at minimum by starting from

(1) good pre-grasp poses found by a task-general grasp detector [121], (2) moving

into configurations with high manipulability [122] while using (3) variable impedance

control in end-effector space [123]. These factors combined together drastically narrow

down the search space.

Currently, the robot draws uniformly random action parameterizations while in-

teracting with the environment. However, this might not be very sample-efficient if a

large portion of the parameter space leads to null effects. As a future direction, we

plan to search the parameter space with methods that are better suited for efficiently

exploring continuous spaces, such as curiosity-based methods [124], evolutionary algo-

rithms [125–127], or leverage LLMs by constructing a natural language interface with

the domain [35].

As we showed that it is possible to learn high-level skills that would interact with

objects, in the next chapter, we take it for granted in order to focus on another aspect

of the overall pipeline: building rules defined over the learned symbols with Relational

DeepSym.

105

8. SYMBOLIC MANIPULATION PLANNING WITH

DISCOVERED OBJECT AND RELATIONAL

PREDICATES

8.1. Introduction

In Chapter 6, we proposed an architecture that can learn not only unary ob-

ject symbols but explicitly encodes relations between objects using binary attention

weights. However, symbolic-level transitions from the learned symbols that enable

domain-independent planning were not considered.

In this chapter, we first learn a set of unary and relational symbols between

objects using the Relational DeepSym architecture from the previous chapter [55],

then we propose a method to build abstract operators defined over these unary and

relational symbols that describe the symbolic transition of a state when an action is

executed. We translate these operators into PDDL descriptions and show that they can

be used for planning with off-the-shelf AI planners in a tabletop object stacking task.

We compare our method with DeepSym [46] and Attentive DeepSym [53] in terms of

effect prediction accuracy and planning performance. Our results show that planning

with the operators defined over relational symbols performs better than the baselines.

8.2. Problem Definition

An environment is characterized by a tuple (X ,A, P) where X denotes the contin-

uous sensory state of the environment (which is called state-space from now on), A is a

finite set of actions that the agent can execute, and P (X′ | X, a) is the probability that

taking action a ∈ A at state X results in state X′. An environment instance consists

of a set of objects {o1, . . . , on} ∈ O each having a do-dimensional continuous-valued

feature vector xi ∈ Rdo defining the state of the environment as an unordered set of

feature vectors X := {x1, . . . ,xn} ∈ X . X is not a fixed-size vector but a variable size

106

depending on the number of objects n in the environment. An action a is a fixed-size

vector representing a high-level parameterized movement primitive that the agent can

execute, such as picking an object. Given an initial state X0 and a goal state Xg, the

objective is to find a sequence of actions (a1, . . . , ak) that maximizes the probability of

reaching the goal state.

We are interested in learning the mapping f : X → P that transforms a state

vector X into a set of predicates (or symbols) Σ := {σ1(X), . . . , σm(X)} ∈ P , where

σi : X → {0, 1}dk is a binary function where dk is an environment dependent fixed

dimension. After symbols are learned, we can find a set of operators (i.e., lifted actions

in the symbolic space) {ϕ1, . . . , ϕk} ∈ Φ in which each operator ϕi : Σ → Σ trans-

forms the current symbols into a new set of symbols. Once symbols and operators are

learned, we can transform the initial state X0 and the goal state Xg into symbolic rep-

resentations Σ0 and Σg, respectively, and then find a sequence of operators (ϕ1, . . . , ϕk)

that transforms Σ0 into Σg, and then execute the corresponding sequence of actions

(a1, . . . , ak) to reach the goal state.

Note that the proposed operator learning system is built on top of our symbol

learning network architecture [55]. Thus, to assess the added value of learning explicit

symbolic transitions, we compare the performance of the proposed model in effect

prediction and planning with DeepSym [46] and Attentive DeepSym [53] in a tabletop

object manipulation setup.

8.3. Methods

8.3.1. Learning Unary and Relational Symbols

Figure 8.1 shows an outline of the method. The architecture is composed of four

main blocks. The encoder network σp learns unary symbols over object features while

the self-attention network σr learns relational symbols. The aggregation in the middle

fuses unary and relational symbols with action into a vector representation for each

107

object, which is given as input to the decoder network g to predict the effect of the

executed action. After learning operators defined over the learned symbols, we can find

a sequence of actions that reach the goal state from the initial state with AI planners.

x1

xn

x2

σp

σr

…

…

σp(x1)
σp(x2)

σp(xn)

σr(x1, x1)…σr(x1, xn)
σr(x2, x1)…σr(x2, xn)

…

σr(xn, x1)…σr(xn, xn)

h1
h2

…

hn

e1
e2

…

en

(:objects obj0 obj1 obj2 obj3)
(:init
 (z0 obj0) (z0 obj1)
 (not_z0 obj2) (not_z0 obj3)
 (r0 obj2 obj1) (r0 obj2 obj2)
 ...
)

(:goal
 (z0 obj0) (z0 obj1)
 (not_z0 obj2) (not_z0 obj3)
 (not_r0 obj2 obj1)
 (r2 obj3 obj1)
 ...
)

...
(:action ...)
(:action o0_-1_o0_1_i0_c1686
 :parameters (?o0)
 :precondition (and
 (not_z0 ?o0)
 (r0 ?o0 ?o0)
 (not_r1 ?o0 ?o0)
 (r2 ?o0 ?o0))
 :effect (and))
(:action ...)
...

; a
; a

; a
g

Figure 8.1. An overview of the proposed method.

8.3.1.1. Encoder Network. σp : X → P is a multi-layer perceptron (MLP) with

Gumbel-Sigmoid (GS) [51] activation that outputs a binary number for each object in

the environment. We treat this as a unary predicate σp(xi) that encodes the property

of an object. The number of properties that can be encoded is bounded by the output

dimensionality of the MLP—at most 2d properties can be encoded with d-dimensional

outputs.

8.3.1.2. Self-Attention Network. σr : X → P is a multi-layer perceptron combined

with a modified version [55] of the original self-attention layer [26]. Given a state

vector X = {x1, . . . ,xn}, the MLP part outputs a set of d-dimensional vectors Q =

{q1, . . . ,qn} and K = {k1, . . . ,kn} where qi and ki are the query and key vectors for

object oi, respectively. Unlike the original self-attention layer, we do not define value

vectors as we are interested in the attention values—object symbols will be treated

108

as value vectors. The second important difference is the computation of the attention

values:

αij = GumbelSigmoid(qi · kj). (8.1)

Firstly, using the sigmoid function instead of softmax allows attention values to focus

on multiple tokens independently. Secondly, the binarization (due to GS) of attention

values allows us to treat them as binary relations between objects while preserving

differentiability.

We define the output of the whole block as a relational predicate σr(xi,xj) that

encodes the relation between objects oi and oj. Note that the order of arguments is

important since qi · kj and qj · ki can have different values. Note that, without loss

of generality, we described the operation with a single attention head; however, in the

implementation, we used three attention heads.

8.3.1.3. Aggregation Function. In this step, unary predicates σp(xi), relational predi-

cates σr(xi,xj), and the action vector a are fused in a single representation hi for each

object that is fed into the decoder network for predicting the effect of the executed

action. The aggregation function is defined as

zi = MLP([σp(xi); a]) ∀i ∈ {1, . . . , n} (8.2)

hk
i =

n∑
j=1

σrk(xi,xj)zi ∀i ∈ {1, . . . , n},∀k ∈ {1, . . . , K} (8.3)

hi = [h1
i ; . . . ;h

K
i], (8.4)

where K is the number of relation types. The action vector a is concatenated with the

unary predicate σp(xi), and then fed into an MLP to obtain a representation zi that

holds action information. Then, for each relation k and object i, intermediate repre-

sentations zj are summed up for indices that satisfy the relation σrk(xi,xj), resulting

in a fixed-size vector hk
i containing information regarding objects that have a relation

rk with object oi. Lastly, {h1
i , . . . , h

k
i } are concatenated to obtain the aggregated repre-

sentation hi that can hold any necessary information about the object oi, the action a,

and the relations between oi and other objects. Equation (8.3) essentially enables mes-

109

sage passing between different object symbols based on the learned relational symbols

between objects, giving us a unified representation.

8.3.1.4. Decoder Network. g is an MLP that takes the aggregated representation hi

as input and outputs the effect êi of action a on the object oi. The predicted effect

is then compared with the ground truth ei to compute the mean squared error that is

backpropagated through the whole network

L =
n∑

i=1

∥êi − ei∥2, (8.5)

where n is the number of objects and the effect vector ei is defined as the difference

between the current state xi and the next state x′
i.

These four blocks create a single differentiable module that can learn unary and

relational predicate symbols over object features to minimize the effect prediction error

in an end-to-end fashion. To train the network, we execute random actions in the

environment and collect a dataset of (X, a,X′) tuples. Then, we train the network to

minimize the effect prediction error L defined in Equation (8.5).

8.3.2. Learning Operators

In this section, we describe how to learn operators that can be used for planning.

Throughout this section, we will denote a ground symbol as σp(xi), a lifted symbol as

σp(?x), and a substitution as θ = {?x/xi} where ?x indicates a free variable that is not

bound to any object.

After we train the network, we can transform the dataset {(X(i), a(i),X′(i))}Ni=1

into a dataset of propositional symbols {(Σ(i)
p , Σ

(i)
r , a(i), Σ

′(i)
p , Σ

′(i)
r)}Ni=1 where

Σ(i)
p = {σp(x

(i)
1), . . . , σp(x

(i)
n)} (8.6)

Σ(i)
r = {σr(x1,x1), . . . , σr(xi,xj), . . . , σr(xn,xn)}, (8.7)

and Σ
′(i)
p , Σ

′(i)
r are defined similarly. For notational simplicity, we consider only a single

relation type σr while the same procedure can be applied to multiple relation types.

110

Our main goal is to find a set of operators Φ = {ϕ1, . . . , ϕm} parameterized by

lifted actions α that are in the form,

ϕi(Σp, Σr;αi) = (Σ ′
p, Σ

′
r), (8.8)

modeling the symbolic transition between states. We start by partitioning samples

by their actions a(i) and preconditions Σ
(i)
p , Σ

(i)
r : samples are grouped if their lifted

actions and preconditions can be represented by the same substitution θ. For example,

consider the following samples:

Σ(1)
p = {σp(x1) = 0, σp(x2) = 0, σp(x3) = 1} (8.9)

a(1) = pick-place(x3,x1) (8.10)

Σ(2)
p = {σp(x1) = 0, σp(x2) = 1, σp(x3) = 0} (8.11)

a(1) = pick-place(x2,x3). (8.12)

These samples can be grouped into the same category C1 with substitutions θ1 =

{?a/x3, ?b/x1, ?c/x2} and θ2 = {?a/x2, ?b/x3, ?c/x1}. This procedure gives us a set of

groups {C1, . . . , Ck} where each group is defined by lifted preconditions and actions.

Next, we compute the lifted effects for each group:

E+p = {σ | σ ∈ Σ ′(i)
p , σ /∈ Σ(i)

p } (8.13)

E−p = {σ | σ ∈ Σ(i)
p , σ /∈ Σ ′(i)

p }. (8.14)

Relational effects E+r and E−r are computed similarly. If lifted effects are not the same

for all samples in a group (i.e., a stochastic environment setting), we select the most

frequent lifted effect for each group. This completes our operator definition:

ϕi(Σp, Σr;αi) = (Σ ′
p, Σ

′
r) (8.15)

Σ ′
p = Σp ∪ E+p \ E−p (8.16)

Σ ′
r = Σr ∪ E+r \ E−r . (8.17)

However, with this strategy, the number of groups increases with the number of

objects. On the other hand, most of the time, only a subset of precondition symbols

are relevant for a given action. For instance, if the action is to pick and place an

object on top of another, then precondition symbols of other objects are irrelevant.

111

Therefore, we only consider a subset of precondition symbols relevant to the action.

Although determining which symbols are relevant is difficult to answer in a general

sense, a practical and generally valid heuristic is to consider topological neighborhood

or contact relations. In our experiments, we define this relevance as objects that are in

the action arguments and objects that are in contact with these argument objects. A

broader topological relevance alternative can also be to consider objects in the vicinity

of action arguments.

(:action o1_0_o0_1_i19_c736
 :parameters (?o0 ?o1)
 :precondition (and
 (not (= ?o0 ?o1))
 (not_p0 ?o0) (not_p0 ?o1)
 (r0 ?o0 ?o0) (r0 ?o0 ?o1)
 (r0 ?o1 ?o0) (r0 ?o1 ?o1)
 (not_r1 ?o0 ?o0) (not_r1 ?o1 ?o1)
 (r2 ?o0 ?o0) (r2 ?o1 ?o1))
 :effect (and
 (not_r1 ?o0 ?o1)
 (r2 ?o1 ?o0)))

Figure 8.2. An example generated PDDL action schema. This action encodes

pick-place(?o1, ‘center’, ?o0, ‘right’) where ?o0 and ?o1 are free variables. The action

schema is the 20th most frequent action in the dataset, with 736 occurrences out of

160K samples.

8.3.3. Translating Operators to PDDL

Each operator ϕi is translated into a PDDL action schema where Σp and Σr are

used as preconditions, E+p and E+r are used as effects, free variables that appear in the

precondition and/or action are used as parameters, and the action name is defined by

the action arguments. In the action schema, each σpi(?x) appear as (pi ?x) or (not pi

?x), depending on the value of the predicate. We filter out action schemas that are

used less than a threshold, which we set to 50 in our experiments. An example action

schema is shown in Figure 8.2. We observed that the most frequently used action

schemas are empty actions, such as picking a short cube from the left, which results

112

in no effect. This is due to the exploration process where we execute random actions

in the environment that frequently result in no effect. Even though these definitions

would not help in the planning process, we choose to keep them as they can be used

in later exploration stages to avoid actions that do not have any effect and, thus, are

not interesting for the agent.

8.4. Experiments

8.4.1. Experiment Setup

We conducted our experiments in a tabletop object stacking environment (see top

left in Figure 8.1). There are two object types: 5x5x5 sized short block and 5x25x5cm

sized long block. An environment instance contains two to four objects represented

by pose and type. A UR10 robot arm has a single high-level action with four discrete

parameters: picking an object from the left, right, or center of the object and releasing

it on top of (or left of, right of) another object.

We followed the data collection procedure in the previous study [55], where the

robot executes random actions in the environment. The difference is that we only

record objects that are either action arguments or in contact with them. These object

features {xi}ki=1 are used as the state vector. The effect vector ei for object oi is the

difference between the next state x′
i and the current state xi. We subtract the lateral

movement of the arm from the effect vector to remove the effect of the carry action.

Otherwise, symbols need to encode global position information of objects, which is not

necessary for planning since actions are already parameterized over objects. Note that

state vectors can also be selected as raw pixels [46], [53]. We collect 200K samples and

split them into 160K training, 20K validation, and 20K test samples.

We compare our method with DeepSym [46] and Attentive DeepSym [53] in

terms of effect prediction accuracy, and only with Attentive DeepSym for planning

performance. The original DeepSym formulation uses a fixed-sized vector to represent

113

the environment’s state, making it hard for us to compare the performance of the two

methods. However, the comparison with the attentive formulation already serves as

a valuable measure to assess whether explicitly learning relational symbols helps the

planning performance.

1 2 3 4 5
Number of actions

0

1

2

3

4

5

6

7

8

E
rr

or
 (c

m
)

DeepSym
Attentive
Relational

Figure 8.3. Effect prediction errors for different numbers of actions.

We train all methods for 4000 epochs with a batch size of 128 and a learning rate

of 0.0001 using Adam optimizer [7]. MLP blocks consist of two layers with 128 hidden

units. In Relational DeepSym (ours), we set the number of relation types to three

and the object symbol dimension to one (i.e., the encoder’s output dimensionality).

However, for other baselines, we set the object symbol dimension to four since these

methods need more representational capacity to encode the state of the environment

without relational symbols. Also, the number of attention heads for the attentive

formulation [53] is set to four. For layers before GS activation, we normalize both the

input and the weight vectors [128] to have a norm of three. This prevents the vanishing

gradients in the GS function. Lastly, we clip gradients by their norm to 10.

114

8.4.2. Effect Prediction Results

We report the test set effect prediction results in Table 8.1. Relational Deep-

Sym performs better than other methods by a small margin, which aligns with the

results in the previous study [55]. In Figure 8.3, we compare these methods by their

cumulative effect prediction error when predicting a sequence of actions by feeding the

prediction back into the state in an autoregressive fashion. Even though we do not see

a significant difference between different methods, this does not directly translate to

planning performance. Attentive DeepSym uses transformer layers to pass information

between object symbols, and there is no straightforward way of translating the rela-

tional knowledge embedded in the transformer weights into lifted operators. This is

the key advantage of the Relational DeepSym as it directly encodes relations symbols

together with object symbols.

Table 8.1. Effect prediction results averaged over three runs. Units are in centimeters.

DeepSym Attentive Relational

4.79 ± 0.12 4.47 ± 0.10 3.21 ± 0.30

8.4.3. Planning Performance

In this section, we compare the planning performance of Relational DeepSym

with the attentive formulation [53]. We generate a random set of problem pairs

{(X(i)
0 ,X

(i)
g)}Ni=1 by executing random actions on the environment. For each prob-

lem pair, we convert X0 and Xg into their symbolic counterparts Σp0 , Σr0 and Σpg ,

Σrg , and produce PDDL problem statements. We filter out relations for object pairs

that are not in contact in the goal state; otherwise, the planner might fail to find a

plan due to spurious relations. We use the Fast Downward planning system [129] and

set a timeout limit to 10 seconds. We automatically check whether a plan is correct by

computing cartesian distances of objects from the goal state and accept it as correct if

the difference is less than 5cm for all objects.

115

1 2 3 4 5
Number of actions

0

20

40

60

80
C

or
re

ct
 p

la
ns

Attentive
Relational

1 2 3 4 5
Number of actions

0

20

40

60

80

C
or

re
ct

 p
la

ns

(a) (b)

1 2 3 4 5
Number of actions

0

20

40

60

80

C
or

re
ct

 p
la

ns

(c)

Figure 8.4. The planning performance for different numbers of objects over three runs

with 100 random problem pairs. (a) Two objects, (b) three objects, (c) four objects.

Figure 8.4 shows the planning performance for different numbers of objects and

actions. Planning with the domain defined over unary and relational symbols generated

by Relational DeepSym performs significantly better than the implicit attentive version

in which all relational information remains hidden in the network’s weights.

We also test our method in a real-world experiment with the same environment

definition (Figure 8.5). We detect the locations of objects with an Intel Realsense

depth camera by clustering pixels and transforming them into the robot frame. We

manually define a goal configuration with its corresponding contact graph. The rest of

the algorithm works the same as in simulation experiments.

116

Initial State Goal State

Figure 8.5. Given an initial environment configuration in the first column, our model

can generate an action sequence reaching the goal state.

Another advantage of using relational symbols in addition to unary symbols is

that we can represent an environment configuration that has many more objects than

the ones in the training set since the number of objects does not affect the encoded

representation since relational symbols are computed independently due to Gumbel-

sigmoid instead of a softmax. This is not the case for the attentive formulation [53]

as the model is biased towards the number of tokens in the training set, similar to

other transformer-based architectures. In Figure 8.6, we initialize the scene with eight

objects and create a goal configuration that was not in the train set. The planner

successfully finds an action sequence that reaches the goal state.

Figure 8.6. Given an initial (left) and a goal state (right), Relational DeepSym can

find a plan to achieve the goal even though it is only trained with two to four objects.

117

8.5. Discussion

In our experiments, we define relevance as objects that are in the action arguments

and objects that are in contact with these argument objects. An alternative relevance

might be to consider objects in the vicinity of action arguments. Although this creates

a limitation, most of our daily activities can be represented with this relevance. An

example exception is controlling a race car with a joystick; learning the relevance

between such objects should be treated as a separate problem.

8.6. Conclusion

In this chapter, we proposed and implemented a framework where object and re-

lational predicates are discovered from the continuous sensory experience of the robot,

symbolic rules that encode the transition dynamics that involve pick and place actions

on arbitrary numbered compound objects are extracted, these rules are automatically

transferred to PDDL and symbolic plans are generated and executed to achieve var-

ious goals. We showed that the planning performance of our framework significantly

outperforms the baselines. The key factor for the performance increase is representing

the environment with relational symbols in addition to object symbols.

118

9. DISCUSSION

The motivation of this thesis is to combine the advantages of neural networks in

function approximation with classical search techniques where one can search for long-

horizon plans once the domain is represented with appropriate symbols. In this thesis,

we choose to learn object and action symbols that are helpful in making accurate effect

predictions. We start by assuming that (1) the robot already has some basic movement

primitives oriented toward objects, such as picking an object; (2) it can recognize the

positions of objects and thereby compute the effect of its action; (3) and the number

of objects that the executed action manipulates is fixed. In Chapter 4, we showed

that, under these assumptions, the system can learn useful symbols that can be used

for domain-independent planning. We removed the assumption of a fixed number of

objects in Chapter 5 and showed a more appropriate formulation with not only object

symbols but their relations in Chapter 6. Next, in Chapter 7, we showed how this

system can be bootstrapped with useful skills from random parameterized actions that

can be used in further stages of learning, partially addressing the first assumption.

Lastly, we showed how to build rules defined over the learned symbols in Chapter 8,

which allowed domain-independent planning.

The main supervision signal for this system is the effect that the robot observes

after executing an action. In our experiments, we define the effect as the cartesian

displacement of objects and assume the robot can compute this effect by recognizing

the positions of objects before and after executing the action. While recognizing object

positions might be a mild assumption, the definition of the effect directly changes

what symbols can be learned in the given domain. For example, with the current

effect definition, the robot cannot develop the necessary symbols that would explain

“the pixels in the display change when pushed buttons on the remote”, as no object

changes its position. On the other hand, if we change our effect representation to pure

pixel differences instead of object displacements (as we did in Section 4.5), then the

robot needs to learn different symbols for objects with different colors and shapes even

119

though they might result in the same cartesian displacement. This is a point where

the definition of the effect introduces an inductive bias in the system. From a practical

viewpoint, we believe that the environment should be assumed to consist of a finite set

of entities, and actions manipulate the properties and the relations of these entities. A

promising future direction is to use slot-attention-based methods [111], [130] trained

with a contrastive objective (e.g., treat state–action–effect tuples as positive examples

and shuffle them for negatives) to partition the state into multiple slots, where these

slots emergently bind with entities in the environment. Presumably, such a contrastive

training would allow semantically meaningful algebraic operations in the latent state-

space (akin to Word2Vec examples such as King − Man + Woman = Queen [131]) that

can be used as effects. This would remove the need for manually defining the effect.

Another consideration regarding the effect is its resolution over time. In this

thesis, we consider actions to be high-level movement primitives that extend throughout

time, e.g., the robot hand goes near an object and grasps it. Effects are assumed to

be one-step state differences after the action execution. However, one can consider

the effects of multiple timesteps (e.g., applying several actions and observing their

effects) while training the proposed system, similar to Xu et al. [109] where they learn

affordances that consider several steps. This expands the effect space (as multiple

effects stack) and, in turn, increases the number of symbols required to be learned. The

advantage is that rules defined over these symbols can cover transitions that require

several actions, reducing the depth of the search. We believe that there is a fundamental

trade-off between the definition of the effect space and the number of learned symbols

(and, in turn, the number of rules). The more we learn (by considering more effects),

the less we search (since the tree gets wider and more shallow), and vice versa.

Throughout the thesis, we mainly used object positions and top-down images as

the sensory input to form symbolic representations. As an alternative, one can possibly

use proprioceptive sensors (sensors that relate to the embodiment of the robot, e.g.,

touch, force/torque sensors) to define the effect of actions, especially in earlier stages to

learn skills that interact with objects [43]. With proprioceptive signals, the robot can

120

easily filter out actions that do not interact with anything in the environment, which

would result in a more sample efficient exploration.

In our experiment setups, we first collect a data set of samples by randomly

interacting with the environment using the agent’s action repertoire, then train the

network with the collected data. This is a one-step process; however, for lifelong

learning, we would need a system that iteratively collects data and gets trained on

it since it is virtually impossible to collect one large independently and identically

distributed (IID) data set of interactions (as we arguably have for image and text

modalities). If we accept that a robot cannot collect IID data at a given time, then

the data collection process should consider previously learned representations to avoid

unnecessary interactions for sample efficiency. In this regard, open-ended learning

methods [132, 133] and curiosity-based methods [124], [134–136] hold a potential for

collecting novel, interesting samples.

Furthermore, if the robot will develop its representations in an explore-and-train

loop, then the learned representations should be compositional through multiple gen-

erations of training. On the other hand, neural networks are not very suited for com-

position as the learned representations are distributed [137], making it challenging to

copy and use a partition of the network. We argue that the neurosymbolic solution pro-

posed in this thesis is better suited for lifelong learning as one can cascade previously

learned symbols as shown in Section 4.4.3 where the system learns ‘larger-than’ rela-

tion using the learned object symbols. Given a new interaction data set, if a decoder

can successfully predict the effects from previously learned symbols, then introducing

a new encoder would only marginally reduce the prediction error. Thus, the system

allows for building new rules induced by the new interaction data set without defining

new symbols. In other words, expanding the knowledge base of the agent is possible

without necessarily expanding the vocabulary (i.e., the symbols), which might be an

easier approach for lifelong learning when compared with retraining a large neural net-

work susceptible to catastrophic forgetting [138], since it is not necessary to learn new

symbols from scratch.

121

In this thesis, we represent problems in PDDL and use AI planners (mGPT for

probabilistic planning [107] in Chapter 4 and Fast Downward for classical planning

in Chapter 8) to search for a solution. Once rules defined over the learned symbols

are available, one can resort to other search methods such as Monte Carlo tree search

[139], or even simple A* search. A promising future direction to guide the search

with heuristic-based planners is to learn symbols in a way that encodes the similarity

between them, as in Asai and Muise [77] where they use a prior over the latent space

that forces state transitions to flip only a couple of binary units.

Collecting experience with robots is slow and cumbersome, especially in the real

world, when compared with other machine learning domains. Therefore, a scalable

robot learning solution is only possible with sample-efficient methods. Sample effi-

ciency, on the other hand, mostly comes with assumptions and restrictions. For in-

stance, in Chapter 7, the robot can learn skills that manipulate objects only if it starts

near the objects. In Chapter 8, we assume that the robot manipulates only the objects

that are in the action argument or in contact with them, which narrows down the

symbolic effect space. While the current machine learning paradigm is trying to make

as few assumptions as possible by employing a single large monolithic network with

a generic objective, robot learning should do the opposite—make as many (preferably

causal) assumptions about the environment and the embodiment as possible in order

to reduce the sample complexity to an operable level.

122

10. CONCLUSION

In this thesis, we propose a framework to learn symbolic representations for ob-

jects from the continuously represented interaction experience of the robot. In this

framework, we have an encoder-decoder network style with binarized activations in the

bottleneck layer that preserves differentiability with an approximation. The encoder

takes the state as input, which is represented as a set of object features, and generates

symbolic outputs. Together with the action encoding (either given or learned), the

decoder predicts the effect of the executed action. After training, the activations in

the bottleneck layer can be used as symbols for objects, which allows us to convert

the domain into a symbolic one by building rules defined over the learned symbols.

Once these rules are translated into a domain-specific language, in our case PDDL,

we can run off-the-shelf AI planners to find a solution to go from an initial state to a

goal state; both expressed symbolically with the help of the encoder. The main idea

is to separate the problem of perception (the neural network part) from reasoning and

problem-solving (search with rules). In the end, the agent’s problem-solving capabil-

ity is built on two main pillars: learning frequently occurring patterns in a predictive

fashion with neural networks and searching for solutions using the learned knowledge.

In Chapter 3, we investigate how to extract high-level units from a trained net-

work such that they can be used in newly introduced tasks. Our initial idea is presented

in Chapter 4, where we introduce DeepSym, and the proceeding chapters progressively

improve the DeepSym architecture. In Chapter 5, we employ self-attention layers after

the encoder to propagate information from multiple object symbols to handle multi-

object effects. Later in Chapter 6, we propose a better formulation for the same problem

where another encoder explicitly outputs symbolic relations between objects. In Chap-

ter 7, we show how high-level skills can be learne by extending the same pipeline with

an action encoder, removing the assumption of pre-defined high-level actions. Lastly,

in Chapter 8, we showed how object and relational symbols allow us to build rules

defined over them that can be translated into PDDL action schemas for planning.

123

REFERENCES

1. Glorot, X. and Y. Bengio, “Understanding the Difficulty of Training Deep Feed-

forward Neural Networks”, International Conference on Artificial Intelligence and

Statistics , Sardinia, Italy, Vol. 13, pp. 249–256, 2010.

2. He, K., X. Zhang, S. Ren and J. Sun, “Delving Deep Into Rectifiers: Surpass-

ing Human-Level Performance on Imagenet Classification”, IEEE International

Conference on Computer Vision, Santiago, Chile, pp. 1026–1034, 2015.

3. Le, Q. V., N. Jaitly and G. E. Hinton, “A Simple Way to Initialize Recurrent

Networks of Rectified Linear Units”, arXiv 1504.00941, 2015.

4. Mishkin, D. and J. Matas, “All You Need is a Good Init”, arXiv 1511.06422,

2015.

5. Duchi, J., E. Hazan and Y. Singer, “Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization”, Journal of Machine Learning Research,

Vol. 12, No. 7, pp. 2121–2159, 2011.

6. Tieleman, T. and G. Hinton, “Lecture 6.5-Rmsprop: Divide the Gradient by

a Running Average of Its Recent Magnitude”, Coursera: Neural Networks for

Machine Learning, 2012.

7. Kingma, D. P. and J. Ba, “Adam: A Method for Stochastic Optimization”, arXiv

1412.6980, 2014.

8. Ioffe, S. and C. Szegedy, “Batch Normalization: Accelerating Deep Network Train-

ing by Reducing Internal Covariate Shift”, arXiv 1502.03167, 2015.

9. Ba, J. L., J. R. Kiros and G. E. Hinton, “Layer Normalization”, arXiv 1607.06450,

2016.

124

10. Miyato, T., T. Kataoka, M. Koyama and Y. Yoshida, “Spectral Normalization for

Generative Adversarial Networks”, International Conference on Learning Repre-

sentations , Vancouver, Canada, 2018.

11. Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “ImageNet: A

Large-Scale Hierarchical Image Database”, IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Miami, Florida, USA, pp. 248–255, 2009.

12. Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár

and C. L. Zitnick, “Microsoft COCO: Common Objects in Context”, European

Conference on Computer Vision, Zurich, Switzerland, Vol. 13/5, pp. 740–755,

2014.

13. Krizhevsky, A., I. Sutskever and G. E. Hinton, “ImageNet Classification with

Deep Convolutional Neural Networks”, Neural Information Processing Systems ,

Lake Tahoe, Nevada, USA, Vol. 25, pp. 1097–1105, 2012.

14. Simonyan, K. and A. Zisserman, “Very Deep Convolutional Networks for Large-

Scale Image Recognition”, arXiv 1409.1556, 2014.

15. He, K., X. Zhang, S. Ren and J. Sun, “Identity Mappings in Deep Residual

Networks”, European Conference on Computer Vision, Amsterdam, The Nether-

lands, Vol. 14/4, pp. 630–645, 2016.

16. He, K., X. Chen, S. Xie, Y. Li, P. Dollár and R. Girshick, “Masked Autoencoders

are Scalable Vision Learners”, IEEE/CVF Conference on Computer Vision and

Pattern Recognition, New Orleans, Louisiana, USA, pp. 16000–16009, 2022.

17. Ronneberger, O., P. Fischer and T. Brox, “U-Net: Convolutional Networks

for Biomedical Image Segmentation”, Medical Image Computing and Computer-

Assisted Intervention International Conference, Munich, Germany, Vol. 18/3, pp.

234–241, 2015.

125

18. Long, J., E. Shelhamer and T. Darrell, “Fully Convolutional Networks for Se-

mantic Segmentation”, IEEE/CVF Conference on Computer Vision and Pattern

Recognition, Boston, Massachusetts, USA, pp. 3431–3440, 2015.

19. Kirillov, A., E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao,

S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollar and R. Girshick, “Segment Any-

thing”, IEEE/CVF International Conference on Computer Vision, Paris, France,

pp. 4015–4026, 2023.

20. Sutskever, I., O. Vinyals and Q. V. Le, “Sequence to Sequence Learning with

Neural Networks”, arXiv 1409.3215, 2014.

21. Devlin, J., M. Chang, K. Lee and K. Toutanova, “BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding”, arXiv 1810.04805,

2018.

22. Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra

and M. Riedmiller, “Playing Atari with Deep Reinforcement Learning”, arXiv

1312.5602, 2013.

23. Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg and D. Has-

sabis, “Human-Level Control through Deep Reinforcement Learning”, Nature,

Vol. 518, No. 7540, pp. 529–533, 2015.

24. Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-

che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-

man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,

K. Kavukcuoglu, T. Graepel and D. Hassabis, “Mastering the Game of Go with

Deep Neural Networks and Tree Search”, Nature, Vol. 529, No. 7587, pp. 484–489,

2016.

126

25. Silver, D., T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanc-

tot, L. Sifre, D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan and D. Has-

sabis, “Mastering Chess and Shogi by Self-Play with a General Reinforcement

Learning Algorithm”, arXiv 1712.01815, 2017.

26. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser and I. Polosukhin, “Attention Is All You Need”, Neural Information

Processing Systems , Long Beach, California, USA, Vol. 31, pp. 6000–6010, 2017.

27. Radford, A., K. Narasimhan, T. Salimans and I. Sutskever, “Improving Language

Understanding by Generative Pre-Training”, 2018, https://openai.com/

research/language-unsupervised, accessed on January 29, 2024.

28. Radford, A., J. Wu, R. Child, D. Luan, D. Amodei and I. Sutskever, “Language

Models Are Unsupervised Multitask Learners”, 2019, https://openai.com/

research/better-language-models, accessed on January 29, 2024.

29. Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,

G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter,

C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,

S. McCandlish, A. Radford, I. Sutskever and D. Amodei, “Language Models Are

Few-Shot Learners”, Neural Information Processing Systems , Virtual, Vol. 34, pp.

1877–1901, 2020.

30. OpenAI, “GPT-4 Technical Report”, arXiv 2303.08774, 2023.

31. Ouyang, L., J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang,

S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. E. Miller,

M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike and R. J. Lowe, “Train-

ing Language Models to Follow Instructions with Human Feedback”, Neural In-

formation Processing Systems , New Orleans, Louisiana, USA, Vol. 36, pp. 27730–

127

27744, 2022.

32. Touvron, H., T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,

B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave

and G. Lample, “Llama: Open and Efficient Foundation Language Models”, arXiv

2302.13971, 2023.

33. Touvron, H., L. Martin, K. R. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bash-

lykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer,

M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao,

V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kar-

das, V. Kerkez, M. Khabsa, I. M. Kloumann, A. Korenev, P. S. Koura, M.-A.

Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mi-

haylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta,

K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. Tan, B. Tang,

R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan,

M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov and T. Scialom,

“Llama 2: Open Foundation and Fine-Tuned Chat Models”, arXiv 2307.09288,

2023.

34. Bommasani, R., D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S.

Bernstein, J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card,

R. Castellon, N. S. Chatterji, A. S. Chen, K. A. Creel, J. Davis, D. Demszky,

C. Donahue, M. Doumbouya, E. Durmus, S. Ermon, J. Etchemendy, K. Etha-

yarajh, L. Fei-Fei, C. Finn, T. Gale, L. E. Gillespie, K. Goel, N. D. Goodman,

S. Grossman, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho, J. Hong,

K. Hsu, J. Huang, T. F. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti,

G. Keeling, F. Khani, O. Khattab, P. W. Koh, M. S. Krass, R. Krishna, R. Ku-

ditipudi, A. Kumar, F. Ladhak, M. Lee, T. Lee, J. Leskovec, I. Levent, X. L. Li,

X. Li, T. Ma, A. Malik, C. D. Manning, S. P. Mirchandani, E. Mitchell, Z. Mun-

yikwa, S. Nair, A. Narayan, D. Narayanan, B. Newman, A. Nie, J. C. Niebles,

H. Nilforoshan, J. F. Nyarko, G. Ogut, L. Orr, I. Papadimitriou, J. S. Park,

128

C. Piech, E. Portelance, C. Potts, A. Raghunathan, R. Reich, H. Ren, F. Rong,

Y. H. Roohani, C. Ruiz, J. Ryan, C. R’e, D. Sadigh, S. Sagawa, K. Santhanam,

A. Shih, K. P. Srinivasan, A. Tamkin, R. Taori, A. W. Thomas, F. Tramèr,

R. E. Wang, W. Wang, B. Wu, J. Wu, Y. Wu, S. M. Xie, M. Yasunaga, J. You,

M. A. Zaharia, M. Zhang, T. Zhang, X. Zhang, Y. Zhang, L. Zheng, K. Zhou

and P. Liang, “On the Opportunities and Risks of Foundation Models”, arXiv

2108.07258, 2021.

35. Celik, B., A. Ahmetoglu, E. Ugur and E. Oztop, “Developmental Scaffolding

with Large Language Models”, International Conference on Development and

Learning , Macau, China, pp. 396–402, 2023.

36. Searle, J. R., “The Chinese Room Revisited”, Behavioral and Brain Sciences ,

Vol. 5, No. 2, pp. 345–348, 1982.

37. Harnad, S., “The Symbol Grounding Problem”, Physica D: Nonlinear Phenom-

ena, Vol. 42, No. 1-3, pp. 335–346, 1990.

38. Konidaris, G., “On the Necessity of Abstraction”, Current Opinion in Behavioral

Sciences , Vol. 29, pp. 1–7, 2019.

39. Konidaris, G., L. P. Kaelbling and T. Lozano-Perez, “Constructing Symbolic

Representations for High-Level Planning”, AAAI Conference on Artificial Intel-

ligence, Québec City, Québec, Canada, Vol. 28, pp. 1932–1940, 2014.

40. Ha, D. and J. Schmidhuber, “World Models”, arXiv 1803.10122, 2018.

41. Hafner, D., T. P. Lillicrap, M. Norouzi and J. Ba, “Mastering Atari with Discrete

World Models”, International Conference on Learning Representations , Virtual,

2020.

42. Ugur, E. and J. Piater, “Bottom-up Learning of Object Categories, Action Ef-

fects and Logical Rules: From Continuous Manipulative Exploration to Symbolic

129

Planning”, IEEE International Conference on Robotics and Automation, Seattle,

WA, USA, pp. 2627–2633, 2015.

43. Ugur, E., Y. Nagai, E. Sahin and E. Oztop, “Staged Development of Robot Skills:

Behavior Formation, Affordance Learning and Imitation with Motionese”, IEEE

Transactions on Autonomous Mental Development , Vol. 7, No. 2, pp. 119–139,

2015.

44. James, S., B. Rosman and G. Konidaris, “Learning Portable Representations for

High-Level Planning”, International Conference on Machine Learning , Vienna,

Austria, Vol. 37, pp. 4682–4691, 2020.

45. Ugur, E. and J. Piater, “Refining Discovered Symbols with Multi-Step Interac-

tion Experience”, International Conference on Humanoid Robots , Seoul, Korea,

Vol. 15, pp. 1007–1012, 2015.

46. Ahmetoglu, A., M. Y. Seker, J. Piater, E. Oztop and E. Ugur, “DeepSym: Deep

Symbol Generation and Rule Learning for Planning From Unsupervised Robot

Interaction”, Journal of Artificial Intelligence Research, Vol. 75, pp. 709–745,

2022.

47. Zhuang, F., Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong and Q. He, “A

Comprehensive Survey on Transfer Learning”, Proceedings of the IEEE , Vol. 109,

No. 1, pp. 43–76, 2020.

48. Hospedales, T., A. Antoniou, P. Micaelli and A. Storkey, “Meta-Learning in Neu-

ral Networks: A Survey”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 44, No. 9, pp. 5149–5169, 2021.

49. Silver, D. L., Q. Yang and L. Li, “Lifelong Machine Learning Systems: Beyond

Learning Algorithms”, 2013 AAAI Spring Symposium Series , Palo Alto, Califor-

nia, USA, 2013.

130

50. Ahmetoglu, A., E. Ugur, M. Asada and E. Oztop, “High-Level Features for Re-

source Economy and Fast Learning in Skill Transfer”, Advanced Robotics , Vol. 36,

No. 5-6, pp. 291–303, 2022.

51. Maddison, C. J., A. Mnih and Y. W. Teh, “The Concrete Distribution: A Con-

tinuous Relaxation of Discrete Random Variables”, arXiv 1611.00712, 2016.

52. Jang, E., S. Gu and B. Poole, “Categorical Reparameterization with Gumbel-

Softmax”, arXiv 1611.01144, 2016.

53. Ahmetoglu, A., E. Oztop and E. Ugur, “Learning Multi-Object Symbols for Ma-

nipulation with Attentive Deep Effect Predictors”, arXiv 2208.01021, 2022.

54. Ahmetoglu, A., E. Oztop and E. Ugur, “Deep Multi-Object Symbol Learning

with Self-Attention Based Predictors”, Signal Processing and Communications

Applications Conference, İstanbul, Türkiye, Vol. 31, pp. 1–4, 2023.

55. Ahmetoglu, A., B. Celik, E. Oztop and E. Ugur, “Discovering Predictive Re-

lational Object Symbols with Symbolic Attentive Layers”, IEEE Robotics and

Automation Letters , Vol. 9, No. 2, pp. 1977–1984, 2024.

56. Ahmetoglu, A., E. Oztop and E. Ugur, “Symbolic Manipulation Planning with

Discovered Object and Relational Predicates”, arXiv 2401.01123, 2024.

57. Kuipers, B., E. A. Feigenbaum, P. E. Hart and N. J. Nilsson, “Shakey: From

Conception to History”, AI Magazine, Vol. 38, No. 1, pp. 88–103, 2017.

58. Murphy, R. R., Introduction to AI Robotics , MIT Press, Cambridge, 2000.

59. Klingspor, V., K. J. Morik and A. D. Rieger, “Learning Concepts from Sensor

Data of a Mobile Robot”, Machine Learning , Vol. 23, No. 2-3, pp. 305–332, 1996.

60. Petrick, R., D. Kraft, K. Mourao, N. Pugeault, N. Krüger and M. Steedman,

131

“Representation and Integration: Combining Robot Control, High-Level Plan-

ning, and Action Learning”, International Cognitive Robotics Workshop, Patras,

Greece, Vol. 6, pp. 32–41, 2008.

61. Mourao, K., R. P. Petrick and M. Steedman, “Using Kernel Perceptrons to Learn

Action Effects for Planning”, International Conference on Cognitive Systems ,

Washington, DC, USA, pp. 45–50, 2008.

62. Wörgötter, F., A. Agostini, N. Krüger, N. Shylo and B. Porr, “Cognitive

Agents—A Procedural Perspective Relying on the Predictability of Object-

Action-Complexes (OACs)”, Robotics and Autonomous Systems , Vol. 57, No. 4,

pp. 420–432, 2009.

63. Kulick, J., M. Toussaint, T. Lang and M. Lopes, “Active Learning for Teach-

ing a Robot Grounded Relational Symbols”, International Joint Conference on

Artificial Intelligence, Beijing, China, Vol. 23, pp. 1451–1457, 2013.

64. Sun, R., “Symbol Grounding: A New Look at an Old Idea”, Philosophical Psy-

chology , Vol. 13, No. 2, pp. 149–172, 2000.

65. Pisokas, J. and U. Nehmzow, “Experiments in Subsymbolic Action Planning

with Mobile Robots”, Adaptive Agents and Multi-Agent Systems II , pp. 80–87,

Springer, 2005.

66. Ugur, E., E. Oztop and E. Sahin, “Goal Emulation and Planning in Perceptual

Space Using Learned Affordances”, Robotics and Autonomous Systems , Vol. 59,

No. 7–8, pp. 580–595, 2011.

67. Ozturkcu, O. B., E. Ugur and E. Oztop, “High-Level Representations through Un-

constrained Sensorimotor Learning”, International Conference on Development

and Learning and Epigenetic Robotics , Valparaiso, Chile, Vol. 10, pp. 1–6, 2020.

68. Mota, T. and M. Sridharan, “Commonsense Reasoning and Knowledge Acquisi-

132

tion to Guide Deep Learning on Robots”, Robotics: Science and Systems , Messe

Freiburg, Freiburg, Germany, Vol. 15, 2019.

69. Sridharan, M. and H. Riley, “Integrating Deep Learning and Non-monotonic Log-

ical Reasoning for Explainable Visual Question Answering”, European Conference

on Multi-Agent Systems , Thessaloniki, Greece, Vol. 17, pp. 558–570, 2020.

70. Law, M., A. Russo and K. Broda, “The Complexity and Generality of Learning

Answer Set Programs”, Artificial Intelligence, Vol. 259, pp. 110–146, 2018.

71. Taniguchi, T., E. Ugur, M. Hoffmann, L. Jamone, T. Nagai, B. Rosman, T. Mat-

suka, N. Iwahashi, E. Öztop, J. H. Piater and F. Wörgötter, “Symbol Emergence

in Cognitive Developmental Systems: A Survey”, IEEE Transactions on Cogni-

tive and Developmental Systems , Vol. 11, No. 4, pp. 494–516, 2019.

72. Konidaris, G., L. P. Kaelbling and T. Lozano-Perez, “Symbol Acquisition for

Probabilistic High-Level Planning”, International Joint Conference on Artificial

Intelligence, Buenos Aires, Argentina, Vol. 24, pp. 3619–3627, 2015.

73. Konidaris, G., L. P. Kaelbling and T. Lozano-Perez, “From Skills to Symbols:

Learning Symbolic Representations for Abstract High-Level Planning”, Journal

of Artificial Intelligence Research, Vol. 61, pp. 215–289, 2018.

74. James, S., B. Rosman and G. Konidaris, “Autonomous Learning of Object-Centric

Abstractions for High-Level Planning”, International Conference on Learning

Representations , Virtual, 2021.

75. Pelleg, D. and A. W. Moore, “X-Means: Extending K-Means with Efficient Esti-

mation of the Number of Clusters”, International Conference on Machine Learn-

ing , Stanford, California, USA, Vol. 1, pp. 727–734, 2000.

76. Asai, M. and A. Fukunaga, “Classical Planning in Deep Latent Space: Bridging

the Subsymbolic-Symbolic Boundary”, arXiv 1705.00154, 2017.

133

77. Asai, M. and C. Muise, “Learning Neural-Symbolic Descriptive Planning Models

via Cube-Space Priors: The Voyage Home (to STRIPS)”, arXiv 2004.12850, 2020.

78. Asai, M., H. Kajino, A. Fukunaga and C. Muise, “Classical Planning in Deep

Latent Space”, Journal of Artificial Intelligence Research, Vol. 74, pp. 1599–1686,

2022.

79. Gibson, J. J., The Ecological Approach to Visual Perception, Houghton Mifflin,

Boston, 1979.

80. Zech, P., S. Haller, S. R. Lakani, B. Ridge, E. Ugur and J. Piater, “Computational

Models of Affordance in Robotics: A Taxonomy and Systematic Classification”,

Adaptive Behavior , Vol. 25, No. 5, pp. 235–271, 2017.

81. Silver, T., R. Chitnis, J. Tenenbaum, L. P. Kaelbling and T. Lozano-Pérez,

“Learning Symbolic Operators for Task and Motion Planning”, IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems , Prague, Czech Republic,

pp. 3182–3189, 2021.

82. Chitnis, R., T. Silver, J. B. Tenenbaum, T. Lozano-Perez and L. P. Kaelbling,

“Learning Neuro-Symbolic Relational Transition Models for Bilevel Planning”,

IEEE/RSJ International Conference on Intelligent Robots and Systems , Kyoto,

Japan, pp. 4166–4173, 2022.

83. Silver, T., A. Athalye, J. B. Tenenbaum, T. Lozano-Perez and L. P. Kaelbling,

“Learning Neuro-Symbolic Skills for Bilevel Planning”, Conference on Robot

Learning , Auckland, New Zealand, pp. 701–714, 2022.

84. Silver, T., R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Perez, L. P. Kael-

bling and J. Tenenbaum, “Inventing Relational State and Action Abstractions for

Effective and Efficient Bilevel Planning”, arXiv 2203.09634, 2022.

85. Silver, T., R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Pérez, L. Kaelbling

134

and J. B. Tenenbaum, “Predicate Invention for Bilevel Planning”, AAAI Confer-

ence on Artificial Intelligence, Washington, DC, USA, Vol. 37, pp. 12120–12129,

2023.

86. Achterhold, J., M. Krimmel and J. Stueckler, “Learning Temporally Extended

Skills in Continuous Domains as Symbolic Actions for Planning”, Conference on

Robot Learning , Atlanta, Georgia, USA, pp. 225–236, 2023.

87. Kumar, N., W. McClinton, R. Chitnis, T. Silver, T. Lozano-Pérez and L. P.

Kaelbling, “Learning Efficient Abstract Planning Models that Choose What to

Predict”, Conference on Robot Learning , Atlanta, Georgia, USA, 2023.

88. Yuan, W., C. Paxton, K. Desingh and D. Fox, “SORNet: Spatial Object-Centric

Representations for Sequential Manipulation”, Conference on Robot Learning ,

Auckland, New Zealand, pp. 148–157, 2022.

89. Schmidhuber, J., “Driven by Compression Progress: A Simple Principle Explains

Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Atten-

tion, Curiosity, Creativity, Art, Science, Music, Jokes”, Anticipatory Behavior in

Adaptive Learning Systems , pp. 48–76, 2008.

90. Wolff, J. G., “Information Compression, Multiple Alignment, and the Representa-

tion and Processing of Knowledge in the Brain”, Frontiers in Psychology , Vol. 7,

pp. 1584–1584, 2016.

91. Wiskott, L. and T. J. Sejnowski, “Slow Feature Analysis: Unsupervised Learning

of Invariances”, Neural Computation, Vol. 14, No. 4, pp. 715–770, 2002.

92. Goodfellow, I., Y. Bengio, A. Courville and Y. Bengio, Deep Learning , MIT Press,

Cambridge, 2016.

93. Trefethen, L. N. and D. Bau, Numerical Linear Algebra, SIAM, Philadelphia,

1997.

135

94. LeCun, Y., L. Bottou, G. B. Orr and K.-R. Müller, “Efficient BackProp”, Neural

Networks: Tricks of the Trade, pp. 9–50, Springer-Verlag, 1998.

95. Rohmer, E., S. P. N. Singh and M. Freese, “V-REP: A Versatile and Scalable

Robot Simulation Framework”, IEEE/RSJ International Conference on Intelli-

gent Robots and Systems , Tokyo, Japan, pp. 1321–1326, 2013.

96. Universal Robots, “The UR10 Collaborative Industrial Robot”, 2012, https://

www.universal-robots.com/products/ur10-robot, accessed on January 29, 2024.

97. Welch, B. L., “The Generalization of ‘Student’s’ Problem when Several Different

Population Variances are Involved”, Biometrika, Vol. 34, No. 1/2, pp. 28–35,

1947.

98. Younes, H. L. and M. L. Littman, “PPDDL1.0: An Extension to PDDL for Ex-

pressing Planning Domains with Probabilistic Effects”, Technical Report CMU-

CS-04-162, 2004.

99. Ugur, E., E. Şahin and E. Oztop, “Self-Discovery of Motor Primitives and

Learning Grasp Affordances”, IEEE/RSJ International Conference on Intelligent

Robots and Systems , Vilamoura, Algarve, Portugal, pp. 3260–3267, 2012.

100. Seker, M. Y., M. Imre, J. Piater and E. Ugur, “Conditional Neural Movement

Primitives”, Robotics: Science and Systems , Messe Freiburg, Freiburg, Germany,

Vol. 15, 2019.

101. Akbulut, M., E. Oztop, M. Y. Seker, X. Hh, A. Tekden and E. Ugur, “ACNMP:

Skill Transfer and Task Extrapolation through Learning From Demonstration

and Reinforcement Learning via Representation Sharing”, Conference on Robot

Learning , London, UK (Virtual), pp. 1896–1907, 2021.

102. Russell, S. J. and P. Norvig, Artificial Intelligence: A Modern Approach, 4th

Edition, Pearson, 2020.

136

103. Hinton, G. E. and R. R. Salakhutdinov, “Reducing the Dimensionality of Data

with Neural Networks”, Science, Vol. 313, No. 5786, pp. 504–507, 2006.

104. Kingma, D. P. and M. Welling, “Auto-encoding Variational Bayes”, arXiv

1312.6114, 2013.

105. Bengio, Y., N. Léonard and A. C. Courville, “Estimating or Propagating Gradi-

ents through Stochastic Neurons for Conditional Computation”, arXiv 1308.3432,

2013.

106. Townsend, W., “The BarrettHand Grasper-Programmably Flexible Part Handling

and Assembly”, Industrial Robot: An International Journal , Vol. 27, No. 3, pp.

181–188, 2000.

107. Bonet, B. and H. Geffner, “mGPT: A Probabilistic Planner Based on Heuristic

Search”, Journal of Artificial Intelligence Research, Vol. 24, pp. 933–944, 2005.

108. Radford, A., L. Metz and S. Chintala, “Unsupervised Representation Learning

with Deep Convolutional Generative Adversarial Networks”, arXiv 1511.06434,

2015.

109. Xu, D., A. Mandlekar, R. Mart́ın-Mart́ın, Y. Zhu, S. Savarese and L. Fei-Fei,

“Deep Affordance Foresight: Planning through What Can Be Done in the Future”,

IEEE International Conference on Robotics and Automation, Xi’an, China, pp.

6206–6213, 2021.

110. Johnson, M., K. Hofmann, T. Hutton and D. Bignell, “The Malmo Platform

for Artificial Intelligence Experimentation”, International Joint Conference on

Artificial Intelligence, New York City, New York, USA, Vol. 25, pp. 4246–4247,

2016.

111. Locatello, F., D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold,

J. Uszkoreit, A. Dosovitskiy and T. Kipf, “Object-Centric Learning with Slot

137

Attention”, Neural Information Processing Systems , Virtual, Vol. 34, pp. 11525–

11538, 2020.

112. Elsayed, G. F., A. Mahendran, S. van Steenkiste, K. Greff, M. C. Mozer and

T. Kipf, “SAVi++: Towards End-to-End Object-Centric Learning from Real-

World Videos”, arXiv 2206.07764, 2022.

113. Paraschos, A., C. Daniel, J. R. Peters and G. Neumann, “Probabilistic Movement

Primitives”, Neural Information Processing Systems , Lake Tahoe, Nevada, USA,

Vol. 26, pp. 2616–2624, 2013.

114. Schaal, S., “Dynamic Movement Primitives-A Framework for Motor Control in

Humans and Humanoid Robotics”, Adaptive Motion of Animals and Machines ,

pp. 261–280, Springer, 2006.

115. Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-

maison, L. Antiga and A. Lerer, “Automatic Differentiation in PyTorch”, Neural

Information Processing Systems Workshop on Autodiff , Long Beach, California,

USA, 2017.

116. Ugur, E., Y. Nagai, H. Celikkanat and E. Oztop, “Parental Scaffolding as A

Bootstrapping Mechanism for Learning Grasp Affordances and Imitation Skills”,

Robotica, Vol. 33, No. 5, pp. 1163–1180, 2015.

117. Asai, M. and A. Fukunaga, “Classical Planning in Deep Latent Space: Bridg-

ing the Subsymbolic-Symbolic Boundary”, AAAI Conference on Artificial Intel-

ligence, New Orleans, Louisiana, USA, Vol. 32, pp. 6094–6101, 2018.

118. Schaul, T., J. Quan, I. Antonoglou and D. Silver, “Prioritized Experience Replay”,

arXiv 1511.05952, 2015.

119. Ghallab, M., A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld

and D. Wilkins, “Pddl—The Planning Domain Definition Language”, AIPS-98

138

Planning Competition, 1998.

120. Rosen, E., B. M. Abbatematteo, S. Thompson, T. Akbulut and G. Konidaris,

“On the Role of Structure in Manipulation Skill Learning”, Conference on Robot

Learning Workshop on Learning, Perception, and Abstraction for Long-Horizon

Planning , Auckland, New Zealand, 2022.

121. Ten Pas, A., M. Gualtieri, K. Saenko and R. Platt, “Grasp Pose Detection in Point

Clouds”, The International Journal of Robotics Research, Vol. 36, No. 13-14, pp.

1455–1473, 2017.

122. Yoshikawa, T., “Manipulability of Robotic Mechanisms”, The International Jour-

nal of Robotics Research, Vol. 4, No. 2, pp. 3–9, 1985.

123. Mart́ın-Mart́ın, R., M. A. Lee, R. Gardner, S. Savarese, J. Bohg and A. Garg,

“Variable Impedance Control in End-Effector Space: An Action Space for Rein-

forcement Learning in Contact-Rich Tasks”, IEEE/RSJ International Conference

on Intelligent Robots and Systems , Macau, China, pp. 1010–1017, 2019.

124. Ten, A., P.-Y. Oudeyer and C. Moulin-Frier, “Curiosity-Driven Exploration”, The

Drive for Knowledge: The Science of Human Information Seeking , p. 53, 2022.

125. Cully, A., J. Clune, D. Tarapore and J.-B. Mouret, “Robots That Can Adapt

Like Animals”, Nature, Vol. 521, No. 7553, pp. 503–507, 2015.

126. Stanley, K. O., “Compositional Pattern Producing Networks: A Novel Abstrac-

tion of Development”, Genetic Programming and Evolvable Machines , Vol. 8, pp.

131–162, 2007.

127. Stanley, K. O. and R. Miikkulainen, “Evolving Neural Networks through Aug-

menting Topologies”, Evolutionary Computation, Vol. 10, No. 2, pp. 99–127, 2002.

128. Salimans, T. and D. P. Kingma, “Weight Normalization: A Simple Reparame-

139

terization to Accelerate Training of Deep Neural Networks”, Neural Information

Processing Systems , Barcelona, Spain, Vol. 30, pp. 901–909, 2016.

129. Helmert, M., “The Fast Downward Planning System”, Journal of Artificial Intel-

ligence Research, Vol. 26, pp. 191–246, 2006.

130. Biza, O., S. van Steenkiste, M. S. Sajjadi, G. F. Elsayed, A. Mahendran and

T. Kipf, “Invariant Slot Attention: Object Discovery with Slot-Centric Reference

Frames”, arXiv 2302.04973, 2023.

131. Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado and J. Dean, “Distributed

Representations of Words and Phrases and Their Compositionality”, Neural In-

formation Processing Systems , Lake Tahoe, Nevada, USA, Vol. 26, pp. 3111–3119,

2013.

132. Wang, R., J. Lehman, J. Clune and K. O. Stanley, “Paired Open-Ended Trail-

blazer (POET): Endlessly Generating Increasingly Complex and Diverse Learning

Environments and Their Solutions”, arXiv 1901.01753, 2019.

133. Wang, G., Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan and A. Anand-

kumar, “Voyager: An Open-Ended Embodied Agent with Large Language Mod-

els”, arXiv 2305.16291, 2023.

134. Ugur, E., M. R. Dogar, M. Cakmak and E. Sahin, “Curiosity-Driven Learning

of Traversability Affordance on a Mobile Robot”, International Conference on

Development and Learning , London, UK, pp. 13–18, 2007.

135. Sancaktar, C., S. Blaes and G. Martius, “Curious Exploration via Structured

World Models Yields Zero-Shot Object Manipulation”, Neural Information Pro-

cessing Systems , New Orleans, Louisiana, USA, Vol. 36, pp. 24170–24183, 2022.

136. Sancaktar, C., J. Piater and G. Martius, “Regularity as Intrinsic Reward for Free

Play”, Neural Information Processing Systems , New Orleans, Louisiana, USA,

140

Vol. 37, 2023.

137. Bengio, Y., “Learning Deep Architectures for AI”, Foundations and Trends in

Machine Learning , Vol. 2, No. 1, pp. 1–127, 2009.

138. French, R. M., “Catastrophic Forgetting in Connectionist Networks”, Trends in

Cognitive Sciences , Vol. 3, No. 4, pp. 128–135, 1999.

139. Browne, C. B., E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlf-

shagen, S. Tavener, D. Perez, S. Samothrakis and S. Colton, “A Survey of Monte

Carlo Tree Search Methods”, IEEE Transactions on Computational Intelligence

and AI in Games , Vol. 4, No. 1, pp. 1–43, 2012.

140. Reddi, S. J., S. Kale and S. Kumar, “On the Convergence of Adam and Beyond”,

International Conference on Learning Representations , Vancouver, Canada, 2018.

141

APPENDIX A: DEEPSYM EXTENDED RESULTS

A.1. Network Architecture and Hyperparameters

A.1.1. Tabletop Environment

The network architectures of encoders f1 and f2 are shown in Tables A.1 and A.2,

respectively. Each convolution is followed by a batch normalization layer and ReLU

activation after the normalization. The network architectures of decoders g1 and g2 are

shown in Tables A.3 and A.4, respectively. Decoders consist of fully connected (FC)

layers with no batch normalization. Adam optimizer [7] with AMSGrad [140] is used.

The learning rate is set to 0.00005 with a 128 batch size. Each model is trained for

300 epochs, and we select the best model based on the mean square error.

Table A.1. Encoder f1.

Layer In ch. Out ch. Stride Pad

Conv3x3 1 32 1 1

Conv3x3 32 32 2 1

Conv3x3 32 64 1 1

Conv3x3 64 64 2 1

Conv3x3 64 128 1 1

Conv3x3 128 128 2 1

Conv3x3 128 256 1 1

Conv3x3 256 256 2 1

Global average pooling over channels

FC 256 2 - -

Gumbel-sigmoid

Number of parameters: 1,174,114

142

Table A.2. Encoder f2.

Layer In ch. Out ch. Stride Pad

Conv3x3 2 32 1 1

Conv3x3 32 32 2 1

Conv3x3 32 64 1 1

Conv3x3 64 64 2 1

Conv3x3 64 128 1 1

Conv3x3 128 128 2 1

Conv3x3 128 256 1 1

Conv3x3 256 256 2 1

Global average pooling over channels

FC 256 1 - -

Gumbel-sigmoid

Number of parameters: 1,174,145

Table A.3. Decoder g1.

Layer Input units Output units

FC+ReLU 5 128

FC+ReLU 128 128

FC 128 3

Number of parameters: 17,667

Table A.4. Decoder g2.

Layer Input units Output units

FC+ReLU 5 128

FC+ReLU 128 128

FC 128 6

Number of parameters: 18,054

143

While finding the number of hidden units, we take five runs and record the

MSE. We increase the number of units if the one-sided Welch’s t-test rejects the null

hypothesis H0 : “Two numbers result in the same MSE” in favor of H1 : “Increased

number results in lower MSE”.

1 2 3 4 5
hidden units in f1

0.0

0.10

0.20

0.30

0.40

0.50

0.60

M
SE

Single obj. loss
Paired obj. loss

1 2 3 4 5
hidden units in f2

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

M
SE

Paired obj. loss

(a) (b)

Figure A.1. The mean square error losses for (a) f1-g1 and (b) f2-g2 network pairs. In

(a), we also show the paired object MSE with a single unit for a varying number of

units in the bottleneck of f1.

We realize that this requires multiple runs and, in fact, is quite inefficient. It

would be better if we had a well-defined metric such as the Bayesian Information

Criterion (BIC). We did not use BIC since it does not lead to plausible results with

deep neural networks that have large parameter sizes.

A.1.2. MNIST 8-puzzle Environment

Network architectures of the encoder and the decoder for the MNIST 8-puzzle

environment are given in Tables A.5 and A.6. For 8-puzzle w/r and 15-puzzle w/r

versions, the bottleneck size is changed from 13 to 14 and 15, respectively. To ensure

the output size for the 15-puzzle, we change the padding of the third and the fourth

convolutional layer in the decoder from one to zero.

144

Table A.5. The encoder for the 8-puzzle environment.

Layer In ch. Out ch. Stride Pad

Conv4x4 1 64 2 1

Conv4x4 64 128 2 1

Conv4x4 128 256 2 1

Conv4x4 256 512 2 1

Global average pooling over channels

FC 512 13 - -

Gumbel-sigmoid

Number of parameters: 2,763,085

A.2. Using the Straight-Through Estimator

The experiment results with STE on the tabletop environment are reported in

Table A.7. Here, objects vary in their sizes and initial positions. The mean and the

standard deviation of 10 runs are reported.

Table A.6. The decoder for the 8-puzzle environment. ConvT stands for transposed

convolutional layers. The last layer of the decoder does not include a batch

normalization layer.

Layer In ch. Out ch. Stride Pad

FC 13+4 512 – –

Reshape (-1, 512) → (-1, 512, 1, 1)

ConvT5x5 512 256 1 0

ConvT4x4 256 128 2 1

ConvT4x4 128 64 2 1

ConvT4x4 64 32 2 1

ConvT4x4 (no batch norm.) 32 1 2 1

Number of parameters: 3,976,097

145

A.3. The Number of States in 8-puzzle w/r and 15-puzzle w/r

For the 8-puzzle w/r, the number of possible states increases from 9! = 362880

to 9 × 98 = 387420489, which is an increase by about a factor of 1000. In general,

the number of states is n2k(n2−1) where n stands for the size of the board (the size is

three for 8-puzzle and four for 15-puzzle), and k is the number of possible digits other

than the empty tile. This translates to ≈ 3.29 × 1015 states for 15-puzzle w/r. On

the other hand, the number of states that the encoder should represent is (n− 2)2k4 +

4(n − 2)k3 + 4k2, which translates to 9801 and 32400 states for 8-puzzle w/r and 15-

puzzle w/r, respectively. Therefore, we train DeepSym with 14 units for 8-puzzle w/r

(log2 9801 ≈ 13.26) and with 15 units for 15-puzzle w/r (log2 32400 ≈ 14.98). In a

sense, we use the most strict limit for the number of units.

Table A.7. The relative assignment frequencies of objects to different symbols.

DeepSym with STE

Category (0, 0) (0, 1) (1, 0) (1, 1)

Sphere 92.9 ± 8.6 2.5 ± 4.4 3.2 ± 6.8 1.4 ± 2.3

Cube 1.4 ± 3.1 92.9 ± 10.3 3.4 ± 5.6 2.3 ± 3.7

Vertical Cylinder 1.9 ± 4.6 93.6 ± 5.4 1.8 ± 2.7 2.7 ± 3.1

Horizontal Cylinder 15.8 ± 27.3 7.6 ± 10.7 74.7 ± 27.0 2.0 ± 3.8

Cup 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 99.9 ± 0.2

Autoencoder with STE (OBO)

Category (0, 0) (0, 1) (1, 0) (1, 1)

Sphere 85.1 ± 12.1 12.3 ± 9.6 2.6 ± 4.3 0.0 ± 0.0

Cube 74.6 ± 17.7 20.4 ± 12.0 5.0 ± 7.0 0.0 ± 0.0

Vertical Cylinder 76.2 ± 15.6 18.3 ± 9.4 5.5 ± 8.5 0.0 ± 0.0

Horizontal Cylinder 78.1 ± 14.4 19.2 ± 11.1 2.8 ± 3.8 0.0 ± 0.0

Cup 92.4 ± 14.1 6.6 ± 13.5 0.9 ± 2.8 0.1 ± 0.2

146

A.4. Generated Plans in DeepSym

Generated plans for different goals are shown in Figure A.2. Successes are framed

in green and fails are framed in red.

(a)

(b)

Figure A.2. Plan executions. (a) Tower with a height of four using four objects

(H4S4). (b) Tower with a height of three using four objects (H3S4).

147

A.5. Symbols Learned in 8-puzzle w/r and 15-puzzle w/r

Figure A.3. Average states that correspond to symbols learned in 8-puzzle w/r

environment.

Figure A.4. Average states that correspond to symbols learned in 15-puzzle w/r

environment.

Figure A.5. Average states that correspond to autoencoder symbols learned in the

8-puzzle environment.

148

Figure A.6. Average states that correspond to autoencoder symbols learned in

8-puzzle w/r environment.

Figure A.7. Average states that correspond to autoencoder symbols learned in

15-puzzle w/r environment.

