
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. DECEMBER 2024 1

Symbolic Manipulation Planning with Discovered
Object and Relational Predicates

Alper Ahmetoglu1, Erhan Oztop2,3, Emre Ugur4

Abstract—Discovering the symbols and rules that can be used
in long-horizon planning from a robot’s unsupervised exploration
of its environment and continuous sensorimotor experience is a
challenging task. The previous studies proposed learning symbols
from single or paired object interactions and planning with these
symbols. In this work, we propose a system that learns rules with
discovered object and relational symbols that encode an arbitrary
number of objects and the relations between them, converts those
rules to Planning Domain Description Language (PDDL), and
generates plans that involve affordances of the arbitrary number
of objects to achieve tasks. We validated our system with box-
shaped objects in different sizes and showed that the system
can develop a symbolic knowledge of pick-up, carry, and place
operations, taking into account object compounds in different
configurations, such as boxes would be carried together with a
larger box that they are placed on. We also compared our method
with other symbol learning methods and showed that planning
with the operators defined over relational symbols gives better
planning performance compared to the baselines.

Index Terms—Developmental Robotics, Learning Categories
and Concepts, Deep Learning Methods

I. INTRODUCTION

THE long-standing challenge for artificial intelligence (AI)
research is to build a generalist agent that can parse

and understand its environment through its sensors, carry out
desired tasks by acting on the environment, and update its
knowledge when necessary to adapt to new situations. The
difficulty in achieving this stems from the fact that we do not
have a well-defined, robust, and generic representation of the
environment that applies to a sufficiently large class of tasks.
The requirements and the resolution of the representation
change drastically when the aimed task properties and/or the
capabilities of the agent change. For example, a robotic agent
tidying up the table needs a different representation of the
environment than a robot tying a rope. It is not even clear

Manuscript received: July 3, 2024; Revised: October 16, 2024; Accepted:
December 20, 2024.

This paper was recommended for publication by Editor Tetsuya Ogata upon
evaluation of the Associate Editor and Reviewers’ comments. This research
was supported by TUBITAK (The Scientific and Technological Research
Council of Turkey) ARDEB 1001 program (project number: 120E274).
Additional support was given by the Grant-in-Aid for Scientific Research
(project no JP23K24926), the project JPNP16007 commissioned by the New
Energy and Industrial Technology Development Organization (NEDO), JST,
CREST (JPMJCR17A4), and by INVERSE project (no. 101136067) funded
by the European Union.

1Department of Computer Science, Brown University
Correspondance aahmetog@cs.brown.edu
2Department of Computer Science, Ozyegin University
3OTRI, SISReC, Osaka University
4Department of Computer Engineering, Bogazici University
Digital Object Identifier (DOI): see top of this page.

whether soft and rigid objects should be represented within a
single representational framework. Nevertheless, once a sym-
bolic representation of the environment that is appropriate for
the task at hand can be obtained, many AI search techniques
become available for efficiently finding a solution to problems
such as planning to achieve a goal [1].

An effective approach to build a set of symbols for obtaining
the leverage of off-the-shelf symbolic systems is to focus on
the preconditions and effects related to the actions of an agent
[2], [3], [4]. Learning precondition-effect relations effectively
models the environment based on the agent’s capabilities. This
is preferable for filtering out irrelevant information that would
otherwise increase the complexity of the problem. Once the
necessary symbols are learned, the environment description
can be translated, for example, into Planning Domain Defini-
tion Language (PDDL) [5] that allows the use of fast domain-
independent planners such Fast Downward [6] or fast-forward
[7]. These methods partition the dataset into subgoal options,
then learn a symbol pair for the precondition-effect tuple.
Alternatively, one can first compress the experience of the
agent, i.e., the sensory state-space explored, into a symbolic
space using deep neural networks, then encode symbolic
transitions either with PDDL or learn a separate module for
generating the necessary action from the current state for a
given goal state [8], [9], [10]. One advantage of this approach
is that it does not require a separate partitioning phase, which
can perform poorly in high-dimensional observations such as
images.

Our previous work, DeepSym [11], stands in between these
two approaches by having a differentiable, deep architecture
that can learn symbolic representations for the preconditions
of the executed action. DeepSym is composed of an encoder-
decoder network with binary bottleneck layers for learning
object symbols to predict the effect of the executed action.
In a follow-up work [12], the architecture is improved by
employing a transformer layer in the decoder, allowing sym-
bols to interact to model multi-object effects. However, the
interaction of symbols remains implicit in the weights of the
transformer and cannot be translated into PDDL in a straight-
forward way, thus limiting the domain-independent planning
capability. In other words, even though the architecture models
relations between objects, these relations cannot be expressed
as relational symbols between objects. Our recent work [13]
proposes a solution for this problem with an architecture that
can learn not only unary object symbols but explicitly encodes
relations between objects using binary attention weights. How-
ever, symbolic-level transitions from the learned symbols that
enable domain-independent planning were not considered.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2025.3527338

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. DECEMBER 2024

In the current study, we first learn a set of unary and rela-
tional symbols between objects using the Relational DeepSym
architecture [13], then we propose a method to build abstract
operators defined over these unary and relational symbols that
describe the symbolic transition of a state when an action is
executed. We translate these operators into PDDL descriptions
and show that they can be used for planning with off-the-shelf
AI planners in a tabletop object stacking task. We compare
our method with [11] and [12] in terms of effect prediction
accuracy and planning performance. Our results show that
planning with the operators defined over relational symbols
performs better than the baselines.

II. RELATED WORK

There is a large body of literature where the learned
affordances or effect predictors have been used to make plans
in the continuous or sub-symbolic space of the robots [14],
[15]. Our work is mainly related to methods that study symbol
emergence [16] and that discover symbolic representations of
the environment from the continuous experience of the robot
through its sensors with the aim of planning with off-the-shelf
AI planners.

[2], [3] proved that it is necessary and sufficient to learn
symbols for the precondition and the effect set of the agent’s
action repertoire to enable planning. Based on this observation,
they learn a set of symbols that cover actions’ pre- and post-
conditions and use them to build a PDDL description of the
environment. These works use a fixed-sized vector to represent
the state of each object with the implicit assumption that the
number of objects will be the same across different environ-
ment instantiations, restricting the portability of previously
learned symbols to new environment settings. In follow-up
work, [17] builds upon this framework by using an agent-
centric state representation, allowing agent-centric symbols to
be shared through different tasks. [4], [18] considers object-
centric precondition and effect set to find discrete symbols
for producing PDDL descriptions. Similarly, [19] used object-
centric representations, which increases the generalization of
symbols through objects with the same properties. These
works cluster the collected transitions based on actions and ef-
fect sets prior to symbol learning procedure to learn a compact
symbol for each precondition-effect set. As such, the quality
of the learned symbols relies on a successful partitioning of
the state-space, which can be non-trivial for high-dimensional
spaces. Our work differs from these in that we directly learn
symbols—without any clustering—using deep neural networks
with binarized bottleneck layers by minimizing the effect
prediction error.

In another line work, [20], [21], [22] proposed a bi-level
planning schema in which a set of operators and corresponding
samplers are learned from previously acquired symbols that
allow the agent to make refined plans that can consider the
geometric information. [23] learns predicates from demonstra-
tions with a surrogate objective for planning. In a follow-up
work, [24] considers a subset of abstract effects to reduce
the complexity of the learned operators. These studies follow
the task and motion planning (TAMP) formulation [25] in

which the problem is not only finding the sequence of tasks
but also finding the correct motion parameters. However,
these TAMP formulations learn state abstractions on top of
high-level predicates such as on(?x, ?y). As our work learns
symbols with an encoder-decoder network to minimize effect
prediction error, the input modality can be continuous and
high-dimensional, as also shown in [11], [12]. Following the
TAMP formulation, [26] learns relational state and action
abstractions based on critical regions [27], [28], which can
be thought as the bottleneck states in the transition history.

[8], [9], [10] use a state autoencoder to compress the
state space into a low-dimensional binary vector and an
action autoencoder to learn action representations from low-
level state transitions. Similarly, [11] uses an encoder-decoder
style architecture to generate symbolic representations in the
bottleneck layer while minimizing the effect prediction error.
In follow-up work, [12] employed transformer layers [29],
enabling the flow of information between object symbols to
model multi-object effects. Recently, [13] proposed a relational
formulation of the encoder-decoder architecture that explic-
itly models relations between objects using binary attention
weights, learning unary and relational symbols simultaneously.
Using the learned symbols, the multi-step effect prediction
performance is compared with previous works, which can be
thought of as a surrogate measure for planning performance.
Even though the multi-step effect prediction with the learned
symbols enables planning with tree search algorithms in the
subsymbolic space, it requires a forward iteration of encoder
networks for each node expansion, which can be a computa-
tionally heavy process with deep networks. Even though [11]
addresses this issue by extracting rules from a decision tree
trained with the learned symbols, the input to the tree is a
canonical, fixed-size symbolic vector where each dimension
denotes the same entity across different samples, which is
not the case when there is a varying number objects with no
canonical order. In this work, we show how to construct a
symbolic transition model in PDDL from a varying number
of object symbols and relations, allowing symbolic planning,
using the object symbols and relations discovered by the
model.

III. METHOD

A. Problem Definition

This paper deals with the problem of learning (1) a symbolic
representation of an environment defined over a finite set
of objects, which is sensed as a continuous sensory state,
and (2) a set of operators that represent the dynamics of
sensory transition dynamics at the symbolic level, which
allows domain-independent planning with the learned symbols
by the use of off-the-shelf AI planners.

An environment is characterized by a tuple (X ,A, P ) where
X denotes the continuous sensory state of the environment
(which is called state-space from now on), A is a finite set
of actions that the agent can execute, and P (X′ | X,a) is
the probability that taking action a ∈ A at state X results
in state X′. An environment instance consists of a set of
objects {o1, . . . , on} ∈ O each having a do-dimensional

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2025.3527338

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



AHMETOGLU et al.: SYMBOLIC MANIPULATION PLANNING WITH DISCOVERED PREDICATES 3

x1

xn

x2

σp

σr

…

σp(x1)

σr1
(xi, xj)

h1
h2

hn

e1
e2
…

en

g

…

σp(x2)

σp(xn)

…⊗

…

a
a

a

dk

n

n

n

…

σrK

da

Fig. 1. An overview of the symbol learning architecture. Two encoder networks, σp and σr , output unary and relational symbols, respectively, by processing
each object’s input features xi in parallel. Both networks are multi-layer perceptrons but one can use other specialized building blocks, such as convolutions
to process images. Different from σp, there is a self-attention operation at the end of σr , which provides an object-object relation. Outputs of these networks
are discretized with functions that allow continuous differentiation. Aggregating their symbolic outputs yields a fixed-size, differentiable representation for
each object. This representation enables learning unary and relational symbols through tasks like predicting the effect of actions.

continuous-valued feature vector xi ∈ Rdo defining the state
of the environment as an unordered set of feature vectors
X := {x1, . . . ,xn} ∈ X . X is not a fixed-size vector but
a variable size depending on the number of objects n in the
environment. An action a is a da-dimensional vector repre-
senting a high-level parameterized movement primitive that the
agent can execute, such as picking an object. This formulation
is similar to object-oriented Markov decision processes [30]
except, here, we are not interested in maximizing a reward
function. Instead, given an initial state X0 and a goal state
Xg , the objective is to find a sequence of actions (a1, . . . ,ak)
that maximizes the probability of reaching the goal state.

We are interested in learning the mapping f : X → P
that transforms a state vector X into a set of predicates (or
symbols) Σ := {σ1(X), . . . , σm(X)} ∈ P , where σi : X →
{0, 1}dk is a binary function where dk is an environment
dependent fixed dimension. After symbols are learned, we
can find a set of operators (i.e., lifted actions in the symbolic
space) {φ1, . . . , φk} ∈ Φ in which each operator φi : Σ→ Σ
transforms the current symbols into a new set of symbols.
Once symbols and operators are learned, we can transform
the initial state X0 and the goal state Xg into symbolic
representations Σ0 and Σg , respectively, and then find a
sequence of operators (φ1, . . . , φk) that transforms Σ0 into
Σg , and then execute the corresponding sequence of actions
(a1, . . . ,ak) to reach the goal state.

Note that the proposed operator learning system is built
on top of our symbol learning network architecture [13].
Thus, to assess the added value of learning explicit symbolic
transitions, we compare the performance of the proposed
model in effect prediction with DeepSym [11] and Attentive
DeepSym [12], and for the planning performance, we only
compare with [12] as there is no straightforward way to
generate a set of rules with DeepSym when a varying number
of objects is affected by the action.

B. Assumptions
We used object pose and type information as input to the

network. One can use raw pixel information as input to the

network as in [11], [12], which would require convolutional
layers, and use slot-attention-based networks to automatically
detect objects in the scene [31]. The second assumption is
that the robot has a set of high-level actions such as picking
and placing. Lastly, we assume that these actions change only
a few objects in the environment. This assumption possibly
limits the application of actions that change lots of objects,
or objects that are in a complex configuration. We discuss
and give possible solutions to this limitation in the discussion
section.

C. Learning Unary and Relational Symbols

Figure 1 shows an outline of the method. The architecture
is composed of four main blocks.

1) Encoder Network: σp : X → P is a multi-layer
perceptron (MLP) with Gumbel-Sigmoid (GS) [32] activation
that outputs a binary number for each object in the environ-
ment. We treat this as a unary predicate σp(xi) that encodes
the property of an object. The number of properties that
can be encoded is bounded by the output dimensionality of
the MLP—at most 2dk properties can be encoded with dk-
dimensional outputs.

2) Self-Attention Network: σr : X → P is a multi-layer
perceptron combined with a modified version [13] of the
original self-attention layer [29]. Given a state vector X =
{x1, . . . ,xn}, the MLP part outputs a set of d-dimensional
vectors Q = {q1, . . . ,qn} and K = {k1, . . . ,kn} where qi

and ki are the query and key vectors for object oi, respectively.
Unlike the original self-attention layer, we do not define value
vectors as we are interested in the attention values. The second
important difference is the computation of the attention values:

σr(xi,xj) = GumbelSigmoid(qi · kj) (1)

Firstly, using the sigmoid function instead of softmax allows
attention values to focus on multiple tokens independently.
Secondly, the binarization (due to GS) of attention values
allows us to treat them as binary relations between objects
while preserving differentiability.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2025.3527338

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. DECEMBER 2024

o1

o2 o3

o1

o1o3

o2 o2

o1o2

o3 o2

o3

o2

o1 o3

o1

o2

pick-place(o1, center, o2, center)

pick-place(o2, center, o3, center)
pick-place(o1, left, o3, left)

pick-place(o2, left, o1, left)
Sample 1

Sample 3

Sample 2

Sample 4

σp(x1)
σp(x2)
σp(x3)

pick-place(o1, center, o2, center)

σp(x1)
σp(x2)
σp(x3)

pick-place(o2, left, o1, left)

σp(x1)
σp(x2)
σp(x3)

σp(x1)
σp(x2)
σp(x3)

pick-place(o1, left, o3, left)

σr(x2, x1)

pick-place(o2, center, o3, center)

Sample 1

Sample 3

Sample 2

Sample 4

σp(?a) =
σp(?b) =
σp(?c) =

?a ?b ?c
?a
?b
?c

pick-place(?a, center, ?b, center)

θ1 = {?a /x1,?b/x2,?c/x3}

θ3 = {?a /x2,?b/x3,?c/x1}
Sample 3

Sample 1
Category 1

σp(?a) =
σp(?b) =
σp(?c) =

?a ?b ?c
?a
?b
?c

pick-place(?b, left, ?a, left)

θ2 = {?a /x1,?b/x2,?c/x3}

θ4 = {?a /x3,?b/x1,?c/x2}
Sample 4

Sample 2
Category 2

Category 1 lifted effects

⊗+
p = ℰ

⊗∅
p = ℰ

⊗+
r = ℰ

⊗+
r = {σr(?a,?b)}

Category 2 lifted effects
⊗+

p = ℰ
⊗∅

p = ℰ
⊗+

r = ℰ
⊗+

r = {σr(?b,?a), σr(?c,?a)}

(:action a_center_b_center 
 :parameters (?a ?b ?c) 
 :precondition (and 
    (not (= ?a ?b)) (not (= ?a ?c)) (not (= ?b ?c)) 
    (p0 ?a) (not_p1 ?a) (not_p2 ?a) (p3 ?a) 
    (p0 ?b) (not_p1 ?b) (p2 ?b) (not_p3 ?b) 
    (p0 ?c) (not_p1 ?c) (not_p2 ?c) (p3 ?c) 
    (not_r0 ?a ?a) (r0 ?a ?b) (r0 ?a ?c)) 
    (not_r0 ?b ?a) (not_r0 ?b ?b) (r0 ?b ?c)) 
    (not_r0 ?c ?a) (not_r0 ?c ?b) (not_r0 ?c ?c))) 
 :effect (and 

(not_r0 ?a ?b) (not (r0 ?a ?b))))

(:action b_left_a_left 
 :parameters (?a ?b ?c) 
 :precondition (and 
    (not (= ?a ?b)) (not (= ?a ?c)) (not (= ?b ?c)) 
    (p0 ?a) (not_p1 ?a) (not_p2 ?a) (p3 ?a) 
    (p0 ?b) (not_p1 ?b) (p2 ?b) (not_p3 ?b) 
    (p0 ?c) (not_p1 ?c) (not_p2 ?c) (p3 ?c) 
    (not_r0 ?a ?a) (not_r0 ?a ?b) (not_r0 ?a ?c)) 
    (r0 ?b ?a) (not_r0 ?b ?b) (not_r0 ?b ?c)) 
    (r0 ?c ?a) (not_r0 ?c ?b) (not_r0 ?c ?c))) 
 :effect (and 

(not_r0 ?b ?a) (not (r0 ?b ?a)) 
(not_r0 ?c ?a) (not (r0 ?c ?a))))

Fig. 2. Top left—Four example transitions are shown in which an object is picked and placed on top of another. In these examples, samples 1 and 3 (and
samples 2 and 4) are the same except their object order, and ideally, should be treated as the same. Top right—After training encoder networks σp and
σr using Equation 6, samples represented continuously are converted to unary and relational symbols using the encoders, resulting in a dataset of discrete
transition tuples. Bottom left—Samples that can be equated to each other using a substitution are grouped into a category that is order-invariant, ready to be
converted into logical rules. Bottom right—Lifted effects are computed for each category and translated into PDDL action schemas.

We define the output of the whole block as a relational pred-
icate σr(xi,xj) that encodes the relation between objects oi
and oj . Relations are directional as σr(xi,xj) and σr(xj ,xi)
can have different values due to different query (qi) and key
(ki) vectors. Note that, without loss of generality, we described
the operation with a single attention head; however, in the
implementation, we used three attention heads: σr1 , σr2 , σr3 .
Through the rest of the text, we denote the number of attention
heads—the number of relations—as K.

3) Aggregation Function: fuses unary predicates σp(xi),
relational predicates σrk(xi,xj), and the action vector a in
a single representation hi for each object that is fed into
the decoder network for predicting the effect of the executed
action. The aggregation function is defined as follows:

zi = MLP([σp(xi);a]) ∀i ∈ {1, . . . , n} (2)

hk
i =

n∑
j=1

σrk(xi,xj)zi ∀i ∈ {1, . . . , n} (3)

∀k ∈ {1, . . . ,K} (4)

hi = [h1
i ; . . . ;hK

i ] (5)

where K is the number of relation types. The action vector
a is concatenated with the unary predicate σp(xi), and then
fed into an MLP to obtain a representation zi that holds
action information. Then, for each relation k and object i,
intermediate representations zj are summed up for indices
that satisfy the relation σrk(xi,xj), resulting in a fixed-
size vector hk

i containing information regarding objects that
have a relation rk with object oi. Lastly, {h1i , . . . , hKi } are
concatenated to obtain the aggregated representation hi that
holds any necessary information about the object oi, the action
a, and the relations between oi and other objects to predict

the effect ei resulted from the action on object oi. Equation 3
essentially enables message passing between different object
symbols based on the learned relations between objects.

4) Decoder Network: g is an MLP that takes the aggregated
representation hi as input and outputs the effect êi of action
a on the object oi. The predicted effect is used to compute the
mean squared error that is backpropagated through the whole
network:

L =

n∑
i=1

‖êi − ei‖2 (6)

where n is the number of objects and the effect vector ei is
defined as the difference between the current state xi and the
next state x′i.

These four blocks create a single differentiable module that
can learn unary and relational predicate symbols over object
features to minimize the effect prediction error in an end-to-
end fashion. To train the network, we execute random actions
in the environment and collect a dataset of (X,a,X′) tuples.
We assume that the number of objects in a single transition
tuple (X(i),a(i),X′

(i)
) is fixed, but different transitions might

contain different number of objects. Then, we train the network
to minimize the effect prediction error L defined in Equation
6.

D. Learning Operators

In this section, we describe how to learn operators that
can be used for planning. Throughout this section, we will
denote a ground symbol as σp(xi), a lifted symbol as σp(?x),
and a substitution as θ = {?x/xi} where ?x indicates a free
variable that is not bound to any object. The overall procedure
is depicted in Figure 2.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2025.3527338

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



AHMETOGLU et al.: SYMBOLIC MANIPULATION PLANNING WITH DISCOVERED PREDICATES 5

1 2 3 4 5
Number of actions

0

1

2

3

4

5

6

7

8

E
rr

or
 (c

m
)

DeepSym
Attentive
Relational

Fig. 3. Effect prediction errors for different numbers of action sequence.

After we train the network, we can transform the dataset
{(X(i),a(i),X′

(i)
)}Ni=1 into a dataset of propositional symbols

{(Σ(i)
p ,Σ

(i)
r ,a(i),Σ

′(i)
p ,Σ

′(i)
r )}Ni=1 where

Σ(i)
p = {σp(x

(i)
1 ), . . . , σp(x(i)

n )}
Σ(i)

r = {σr(x1,x1), . . . , σr(xi,xj), . . . , σr(xn,xn)}

and Σ
′(i)
p , Σ

′(i)
r are defined similarly. For notational simplicity,

we consider only a single relation type σr while the same
procedure can be applied to multiple relation types.

Our main goal is to find a set of operators Φ =
{φ1, . . . , φm} parameterized by lifted actions α that are in
the following form:

φi(Σp,Σr;αi) = (Σ′p,Σ
′
r) (7)

modeling the symbolic transition between states. We start by
partitioning samples by their actions a(i) and preconditions
Σ

(i)
p , Σ

(i)
r : samples are grouped if their lifted actions and

preconditions can be represented by the same substitution θ.
For example, consider the following samples:

Σ(1)
p = {σp(x1) = 0, σp(x2) = 0, σp(x3) = 1}

a(1) = pick-place(x3,x1)

Σ(2)
p = {σp(x1) = 0, σp(x2) = 1, σp(x3) = 0}

a(1) = pick-place(x2,x3)

These samples can be grouped into the same category C1

with substitutions θ1 = {?a/x3, ?b/x1, ?c/x2} and θ2 =
{?a/x2, ?b/x3, ?c/x1}. This procedure gives us a set of
groups {C1, . . . , Ck} where each group is defined by lifted
preconditions and actions. Next, we compute the lifted effects
for each group:

E+p = {σ | σ ∈ Σ′(i)p , σ /∈ Σ(i)
p }

E−p = {σ | σ ∈ Σ(i)
p , σ /∈ Σ′(i)p }

Relational effects E+r and E−r are computed similarly. If lifted
effects are not the same for all samples in a group (i.e., a
stochastic environment setting), we select the most frequent
lifted effect for each group. This completes our operator
definition:

φi(Σp,Σr;αi) = (Σ′p,Σ
′
r)

Σ′p = Σp ∪ E+p \ E−p
Σ′r = Σr ∪ E+r \ E−r

However, with this strategy, the number of groups increases
with the number of objects. On the other hand, most of the
time, only a subset of precondition symbols are relevant for a
given action. For instance, if the action is to pick and place an
object on top of another, then precondition symbols of other
objects are irrelevant. Therefore, we only consider a subset
of precondition symbols relevant to the action. Although
determining which symbols are relevant is difficult to answer
in a general sense, a practical and generally valid heuristic is
to consider topological neighborhood or contact relations. In
our experiments, we define this relevance as objects that are
in the action arguments and objects that are in contact with
these argument objects. For example, if the action is pick-
place(x1, x3), we consider object and relational symbols that
correspond to o1 and o3, and those that are in contact with o1
and o3. A broader topological relevance alternative can also
be to consider objects in the vicinity of action arguments.

E. Translating Operators to PDDL

Each operator φi is translated into a PDDL action schema
where Σp and Σr are used as preconditions, E+p and E+r are
used as effects, free variables that appear in the precondition
and/or action are used as parameters, and the action name is
defined by the action arguments. In the action schema, each
σpi(?o) appear as (pi ?o) or (not_pi ?o), depending on
the value of the predicate. We filter out action schemas that
are used less than a threshold, which we set to 50 in our
experiments. An example action schema is shown in Figure
2, bottom-right. We observed that the most frequently used
action schemas are empty actions, such as picking a short
cube from the left, which results in no effect. This is due to the
exploration process where we execute random actions in the
environment that frequently result in no effect. Even though
these definitions would not help in the planning process, we
choose to keep them as they can be used in later exploration
stages to avoid actions that do not have any effect and, thus,
are not interesting for the agent.

IV. EXPERIMENTS

A. Experiment Setup

We conducted our experiments in a tabletop object stacking
environment (see top left in Figure 1). There are two ob-
ject types: 5x5x5cm sized short block and 5x25x5cm sized
long block. An environment instance contains two to four
objects represented by pose and type. A UR10 robot arm
has a four-dimensional action with discrete parameterizations,
a = (oi, δi, oj , δj): picking an object oi from the left, right, or
center of the object (δi) and releasing it on top, left, or right
of (δj) another object oj .

We followed the data collection procedure in [13], where
the robot executes random actions in the environment. The
difference is that we only record objects that are either action
arguments or in contact with them. These object features
{xi}Ki=1 are used as the state vector. The effect vector ei
for object oi is the difference between the next state x′i and
the current state xi. We subtract the lateral movement of the
arm from the effect vector to remove the effect of the carry

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2025.3527338

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. DECEMBER 2024

(a) (b) (c)
Fig. 4. The planning performance for different numbers of objects over three runs with 100 random problem pairs. (a) 2 objects, (b) 3 objects, (c) 4 objects.

Initial State Goal State

Fig. 5. Given an initial environment configuration in the first column, our
model can generate an action sequence reaching the goal state.

action. Otherwise, symbols need to encode global position
information of objects, which is not necessary for planning
since actions are already parameterized over objects. Note that
state vectors can also be selected as raw pixels as in [11], [12].
We collect 200K samples and split them into 160K training,
20K validation, and 20K test samples.

TABLE I
EFFECT PREDICTION RESULTS AVERAGED OVER THREE RUNS. UNITS ARE

IN CENTIMETERS.

DeepSym Attentive Relational
4.79 ± 0.12 4.47 ± 0.10 3.21 ± 0.30

We compare our method with [11] and [12] in terms of
effect prediction accuracy, and with [12] for planning perfor-
mance. The original DeepSym formulation uses a fixed-sized
vector to represent the environment’s state, making it hard for
us to compare the performance of the two methods. However,
the comparison with [12] already serves as a valuable measure
to assess whether explicitly learning relational symbols helps
the planning performance.

We train all methods for 4000 epochs with a batch size
of 128 and a learning rate of 0.0001 using Adam optimizer
[33]. MLP blocks consist of two layers with 128 hidden units.
In Relational DeepSym (ours), we set the number of relation
types K to three and the object symbol dimension d to one
(i.e., the encoder’s output dimensionality). However, for other
baselines, we set the object symbol dimension to four since
these methods need more representational capacity to encode
the state of the environment without relational symbols. Also,
the number of attention heads for the attentive formulation [12]
is set to four. Following [34], for layers before GS activation,
we normalize both the input and the weight vectors to have
a norm of three. This prevents the vanishing gradients in the
GS function. Lastly, we clip gradients by their norm to 10.

(a) (b)
Fig. 6. Given an initial state (a) and a goal state (b), Relational DeepSym
can find a plan to achieve the goal even though it is only trained with two to
four objects.

B. Effect Prediction Results

We report the test set effect prediction results in Table I.
Relational DeepSym performs better than other methods by
a small margin, which aligns with the results in [13]. In
Figure 3, we compare these methods by their cumulative effect
prediction error when predicting a sequence of actions by
feeding the prediction back into the state in an autoregressive
fashion. Even though we do not see a significant difference
between different methods, this does not directly translate to
planning performance. Attentive DeepSym uses transformer
layers to pass information between object symbols, and there is
no straightforward way of translating the relational knowledge
embedded in the transformer weights into lifted operators. This
is the key advantage of the Relational DeepSym as it directly
encodes relational symbols together with object symbols.

C. Planning Performance

In this section, we compare the planning performance of
Relational DeepSym with the attentive formulation [12]. We
skip the comparison with DeepSym as there is no straightfor-
ward way of generating rules for varying number of objects.
We generate a random set of problem pairs {(X(i)

0 ,X
(i)
g )}Ni=1

by executing random actions on the environment. For each
problem pair, we convert X0 and Xg into their symbolic
counterparts Σp0 , Σr0 and Σpg , Σrg , and produce PDDL
problem statements. We filter out relations for object pairs
that are not in contact in the goal state; otherwise, the planner

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2025.3527338

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



AHMETOGLU et al.: SYMBOLIC MANIPULATION PLANNING WITH DISCOVERED PREDICATES 7

might fail to find a plan due to spurious relations. We use the
Fast Downward planning system [6] and set a timeout limit to
10 seconds. We automatically check whether a plan is correct
by computing cartesian distances of objects from the goal state
and accept it as correct if the difference is less than 5cm for
all objects.

Figure 4 shows the planning performance for different
numbers of objects and actions. We also test each model with
a noisy version of the environment where we add a noise
of ε ∼ N (0, 0.01cm) (i.e., approximately maximum 3cm) to
observations throughout training and testing to simulate a more
realistic scenario. Planning with the domain defined over unary
and relational symbols generated by Relational DeepSym
performs significantly better than the implicit attentive version
in which all relational information remains hidden in the
network’s weights. We also test our method in a real-world
experiment with the same environment definition (Figure 5).
We detect the locations of objects with an Intel Realsense
depth camera by clustering pixels and transform them into the
robot frame. We manually define a goal configuration with its
corresponding contact graph. The rest of the algorithm works
the same as in simulation experiments.

Another advantage of using relational symbols in addition
to unary symbols is that we can represent an environment
configuration that has many more objects than the ones in the
training set since the number of objects does not affect the
encoded representation. This is not the case for the attentive
formulation [12] as the model is biased towards the number of
tokens in the training set, similar to other transformer-based
architectures. In Figure 6, we initialize the scene with eight
objects and create a goal configuration that was not in the
train set. The planner successfully finds an action sequence
that reaches the goal state.

D. Interpretation of Learned Symbols

We visualize the groundings of learned unary and relational
symbols of a single run in Figure 7. We see that the unary
symbol captures the type of the block regardless of its position
whereas relational symbols capture the relative position of
objects. Namely, Relation 1 models the z-axis differences
between objects, Relation 2 captures the misalignment in the
x-axis, and Relation 3 seems to be the inverse of Relation 2.

V. DISCUSSION

The learned operators become increasingly complex—and
possibly overfit—as the number of objects increases. This
is unavoidable if the action indeed changes the states of all
objects. However, this is rarely the case in practice as a robot’s
skill only manipulate a few objects at a time. As such, it is
practical to think that operators should model the dynamics
of objects that are relevant. In our experiments, we define
relevance as objects that are in the action arguments and
objects that are in contact with these argument objects. A more
structured treatment can be done by using deictic references
[35], [36], [37], [38]. Deictic references are unique pointers to
objects with respect to action arguments and relations to those.
‘the object I pick’ and ‘the object that has an active relation

Unary Symbol Relation 1

Relation 2 Relation 3

o y
o 1

[y
] -

 o
2[

y]

o1[x] - o2[x] o1[x] - o2[x]

o1[x] - o2[x]

o 1
[y

] -
 o
2[

y]

ox

o 1
[y

] -
 o
2[

y]

Fig. 7. Visualization of learned unary and relational symbols. Red points
correspond to active symbols (i.e., σ(.) = 1) and blue points correspond
to inactive symbols. Top left—Crosses and circles represent small and large
blocks, respectively. We see that the unary symbol gets activated for large
blocks. Relation 1 catches the relative z-axis position of objects whereas
Relation 2 is active when objects are not aligned in the x-axis. Relation 3
seems to be the inverse of Relation 2.

σr with the object I pick’ are two example deictic references.
An alternative relevance might be to consider objects in the
vicinity of action arguments. Although this creates a limitation,
most of our daily activities can be represented with this
relevance. An example exception is controlling a race car with
a joystick; learning the relevance between such objects should
be treated as a separate problem.

As with any learning algorithm, the learned symbols, rela-
tions, and rules depend on the training data. Learning rules that
cover the deeper parts of the state graph (e.g., stacking a fourth
block on top of three blocks) is naturally harder as the agent
cannot collect enough transition data to cover these states.
Better exploration strategies that are guided by the learned
model in a feedback loop can possibly resolve this issue. In
addition, universal quantifiers are needed in the rule learning
procedure to learn more generic rules such as ‘stacking a block
on top of n blocks’, instead of learning ‘stacking a block on top
of two blocks’ and ‘stacking a block on top of three blocks’
separately. This would also reduce the sample complexity as
these two cases become equivalent with the use of universal
quantifiers (i.e., all blocks that are in the stack). We believe
these are the main bottlenecks that will persist regardless of
the model used, and therefore, focusing on them would be a
promising direction.

In our experiments, we compared the proposed pipeline with
our previous symbol learning method [12]. While there are
notable works [19], [10], [26], [23] that also learn symbolic
representations in the object-centric setting, providing a fair
comparison with these works require substantial changes to
them. The main differences are a combination of the following:
(1) the lack of learning generic relational symbols, (2) the use
of pre-defined predicates, (3) no neural network integration. A
comparison of these algorithms in simple domains that can be

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2025.3527338

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. DECEMBER 2024

expressed both with and without relations would be beneficial
to understand the added value of relational symbols.

VI. CONCLUSION

In this study, we proposed and implemented a framework
where object and relational predicates are discovered from the
continuous sensory experience of the robot, symbolic rules
that encode the transition dynamics that involve pick and
place actions on arbitrary numbered compound objects are
extracted, these rules are automatically transferred to PDDL
and symbolic plans are generated and executed to achieve
various goals. We showed that the planning performance of
our framework significantly outperforms the baseline. The
key factor for the performance increase is representing the
environment with relational symbols in addition to object
symbols. In future work, we plan to use the learned operators
to search for novel states and effects, which would drastically
increase the sample efficiency and thus, the learning progress.

REFERENCES

[1] G. Konidaris, “On the necessity of abstraction,” Curr. Opin. Behav. Sci.,
vol. 29, pp. 1–7, 2019.

[2] G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “Constructing sym-
bolic representations for high-level planning,” in Proc. AAAI Conf. Artif.
Intell., 2014, pp. 1932–1940.

[3] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From skills
to symbols: Learning symbolic representations for abstract high-level
planning,” J. Artif. Intell. Res., vol. 61, pp. 215–289, 2018.

[4] E. Ugur and J. Piater, “Bottom-up learning of object categories, action
effects and logical rules: From continuous manipulative exploration to
symbolic planning,” in Proc. IEEE Int. Conf. Robot. Automat., 2015, pp.
2627–2633.

[5] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “Pddl— the planning domain definition
language,” 1998, [Online]. Available: https://api.semanticscholar.org/
CorpusID:59656859.

[6] M. Helmert, “The fast downward planning system,” J. Artif. Intell. Res.,
vol. 26, pp. 191–246, 2006.

[7] J. Hoffmann, “FF: The fast-forward planning system,” AI magazine,
vol. 22, no. 3, pp. 57–57, 2001.

[8] M. Asai and A. Fukunaga, “Classical planning in deep latent space:
Bridging the subsymbolic-symbolic boundary,” in Proc. AAAI Conf.
Artif. Intell., 2018, pp. 6094–6101.

[9] M. Asai and C. Muise, “Learning neural-symbolic descriptive planning
models via cube-space priors: The voyage home (to strips),” in Proc.
29th Int. Joint Conf. Artif. Intell., 2021, pp. 2676–2682.

[10] M. Asai, H. Kajino, A. Fukunaga, and C. Muise, “Classical planning in
deep latent space,” J. Artif. Intell. Res., vol. 74, pp. 1599–1686, 2022.

[11] A. Ahmetoglu, M. Y. Seker, J. Piater, E. Oztop, and E. Ugur, “Deepsym:
Deep symbol generation and rule learning for planning from unsuper-
vised robot interaction,” J. Artif. Intell. Res., vol. 75, pp. 709–745, 2022.

[12] A. Ahmetoglu, E. Oztop, and E. Ugur, “Learning multi-object
symbols for manipulation with attentive deep effect predictors,”
arXiv:2208.01021, 2022.

[13] A. Ahmetoglu, B. Celik, E. Oztop, and E. Ugur, “Discovering predictive
relational object symbols with symbolic attentive layers,” IEEE Robotics
and Automation Letters, vol. 9, pp. 1977–1984, 2024.

[14] E. Ugur, E. Şahin, and E. Oztop, “Unsupervised learning of object
affordances for planning in a mobile manipulation platform,” in Proc.
IEEE Int. Conf. Robot. Automat., 2011, pp. 4312–4317.

[15] P. Zech, S. Haller, S. R. Lakani, B. Ridge, E. Ugur, and J. Piater,
“Computational models of affordance in robotics: a taxonomy and
systematic classification,” Adaptive Behavior, vol. 25, no. 5, pp. 235–
271, 2017.

[16] T. Taniguchi, T. Nagai, T. Nakamura, N. Iwahashi, T. Ogata, and
H. Asoh, “Symbol emergence in robotics: a survey,” Adv. Robot., vol. 30,
no. 11–12, pp. 706–728, 2016.

[17] S. James, B. Rosman, and G. Konidaris, “Learning portable representa-
tions for high-level planning,” in Proc. Int. Conf. Mach. Learn., 2020,
pp. 4682–4691.

[18] E. Ugur and J. Piater, “Refining discovered symbols with multi-step
interaction experience,” in Proc. IEEE-RAS 15th Int. Conf. Humanoid
Robots, 2015, pp. 1007–1012.

[19] S. James, B. Rosman, and G. Konidaris, “Autonomous learning of
object-centric abstractions for high-level planning,” in Proc. Int. Conf.
Learn. Representations, 2022, [Online]. Available: https://openreview.
net/forum?id=rrWeE9ZDw .

[20] T. Silver, R. Chitnis, J. Tenenbaum, L. P. Kaelbling, and T. Lozano-
Pérez, “Learning symbolic operators for task and motion planning,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 3182–3189.

[21] R. Chitnis, T. Silver, J. B. Tenenbaum, T. Lozano-Perez, and L. P.
Kaelbling, “Learning neuro-symbolic relational transition models for
bilevel planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022,
pp. 4166–4173.

[22] T. Silver, A. Athalye, J. B. Tenenbaum, T. Lozano-Perez, and L. P.
Kaelbling, “Learning neuro-symbolic skills for bilevel planning,” in
Proc. Conf. Robot Learn., 2022, pp. 701–714.

[23] T. Silver, R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Pérez,
L. Kaelbling, and J. B. Tenenbaum, “Predicate invention for bilevel
planning,” in Proc. AAAI Conf. Artif. Intell., 2023, pp. 12 120–12 129.

[24] N. Kumar, W. McClinton, R. Chitnis, T. Silver, T. Lozano-Pérez, and
L. P. Kaelbling, “Learning efficient abstract planning models that choose
what to predict,” in Proc. Conf. Robot Learn., 2023, pp. 2070–2095.

[25] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling,
and T. Lozano-Pérez, “Integrated task and motion planning,” Annual
review of control, robotics, and autonomous systems, vol. 4, pp. 265–
293, 2021.

[26] N. Shah, J. Nagpal, P. Verma, and S. Srivastava, “From reals to logic and
back: Inventing symbolic vocabularies, actions and models for planning
from raw data,” arXiv:2402.11871, 2024.

[27] D. Molina, K. Kumar, and S. Srivastava, “Learn and link: Learning
critical regions for efficient planning,” in Proc. IEEE Int. Conf. Robot.
Automat., 2020, pp. 10 605–10 611.

[28] N. Shah and S. Srivastava, “Using deep learning to bootstrap abstractions
for hierarchical robot planning,” arXiv:2202.00907, 2022.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Proc. Adv.
Neural Inf. Process. Syst., pp. 6000–6010, 2017.

[30] C. Diuk, A. Cohen, and M. L. Littman, “An object-oriented represen-
tation for efficient reinforcement learning,” in Proc. Int. Conf. Mach.
Learn., 2008, pp. 240–247.

[31] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold,
J. Uszkoreit, A. Dosovitskiy, and T. Kipf, “Object-centric learning with
slot attention,” Proc. Adv. Neural Inf. Process. Syst., vol. 33, pp. 11 525–
11 538, 2020.

[32] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A
continuous relaxation of discrete random variables,” arXiv:1611.00712,
2016.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015, [Online]. Available:
https://arxiv.org/abs/1412.6980.

[34] T. Salimans and D. P. Kingma, “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,” Proc.
Adv. Neural Inf. Process. Syst., pp. 901–909, 2016.

[35] P. E. Agre and D. Chapman, “Pengi: An implementation of a theory of
activity,” in Proc. 6th National Conf. Artif. Intell., 1987, pp. 268–272.

[36] S. Finney, N. H. Gardiol, L. P. Kaelbling, and T. Oates, “Learning with
deictic representation,” 2002, [Online]. Available: http://www.ai.mit.edu/
research/abstracts/abstracts2001/machine-learning/05kaelbling1.pdf.

[37] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning symbolic
models of stochastic domains,” J. Artif. Intell. Res., vol. 29, pp. 309–352,
2007.

[38] O. Marom and B. Rosman, “Zero-shot transfer with deictic object-
oriented representation in reinforcement learning,” Proc. Adv. Neural
Inf. Process. Syst., pp. 2297–2305, 2018.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2025.3527338

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.


