This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3350994

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JANUARY 2024 1

Discovering Predictive Relational Object Symbols
with Symbolic Attentive Layers

Alper Ahmetoglu!, Batuhan Celik!, Erhan Oztop?3, Emre Ugur!

Abstract—In this paper, we propose and realize a new deep
learning architecture for discovering symbolic representations
for objects and their relations based on the self-supervised
continuous interaction of a manipulator robot with multiple
objects in a tabletop environment. The key feature of the model
is that it can take a changing number of objects as input and
map the object-object relations into symbolic domain explicitly.
In the model, we employ a self-attention layer that computes
discrete attention weights from object features, which are treated
as relational symbols between objects. These relational symbols
are then used to aggregate the learned object symbols and
predict the effects of executed actions on each object. The result
is a pipeline that allows the formation of object symbols and
relational symbols from a dataset of object features, actions, and
effects in an end-to-end manner. We compare the performance of
our proposed architecture with state-of-the-art symbol discovery
methods in a simulated tabletop environment where the robot
needs to discover symbols related to the relative positions of
objects to predict the action’s result. Our experiments show that
the proposed architecture performs better than other baselines
in effect prediction while forming not only object symbols but
also relational symbols.

Index Terms—Developmental Robotics, Learning Categories
and Concepts, Deep Learning Methods

I. INTRODUCTION

EARNING the symbolic representation of tasks enables

the application of classical Al search techniques to find a
solution in the symbolic definition of the task. For well-defined
environments, symbolic systems can be manually designed
to describe robot-environment interactions. However, such
manual designs would only be scalable to a handful of domains
and require significant work to adapt to new environments.
On the other hand, learning the required symbols for the
task from data would be a more scalable and generalizable
strategy to achieve truly intelligent robots [1]. Therefore, there
is a considerable amount of research on how to convert the
sensorimotor experience of a robotic agent into symbolic
representations [2].

Manuscript received: August 31, 2023; Revised: November 23, 2023;
Accepted: December 20, 2023.

This paper was recommended for publication by Editor Tetsuya Ogata upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by TUBITAK (The Scientific and Technological Research Council
of Turkey) ARDEB 1001 program (120E274), Grant-in-Aid for Scientific
Research (22H03670), the project JPNP16007 commissioned by the New
Energy and Industrial Technology Development Organization (NEDO), JST,
CREST (JPMJCR17A4), and INVERSE project (101136067) funded by the
European Union.

IDepartment of Computer Engineering,
alper.ahmetoglu@boun.edu.tr

2Department of Computer Science, Ozyegin University

30TRI, SISReC, Osaka University

Digital Object Identifier (DOI): see top of this page.

Bogazici University

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

One prominent strategy for learning the necessary symbols
is to partition the precondition and the effect set of the agent’s
actions and learn classifiers for these partitions [3], [4], [5].
This ensures that the learned symbols are compatible with
the actions available to the agent and filters out irrelevant
aspects of the environment that the agent cannot manipulate.
Learning symbols can also be formalized as compressing the
state-space into symbolic state-space with autoencoders [6],
[7], [8]. Operators, which are high-level actions manipulating
these symbols, can be learned simultaneously or separately.
One of the main advantages of this approach is that symbols
are learned with deep neural networks, which opens up the
possibility of integrating other deep architectures to the learn-
ing pipeline, such as convolutional layers to process images, to
improve the quality of the learned representations. However,
the advantage of deep architectures is usually conditional on
the amount of data available, which is especially critical in
robotics applications. Therefore, it is important to use deep
architectures only for parts of a system that can benefit from
them.

Our previous work, DeepSym [9], combines these two moti-
vations: learning preconditions and effects of actions with deep
neural networks. In DeepSym, an encoder-decoder network
with a discrete bottleneck layer is trained to predict the effect
of actions (Figure 1 — bottom left). However, the network can
only handle a fixed number of object interactions, restricting
the types of relations that can be learned. This restriction is
lifted in a more recent work [10] by introducing a self-attention
mechanism [11] to the architecture (Figure 1 — bottom right).
As symbols interact with each other using self-attention, the
network can make accurate predictions for related objects
(e.g., on top of each other). Although this architecture is
effective in making accurate predictions for related objects
through the learned multi-object symbols, it does not reveal
the explicit relations between objects. Furthermore, as the self-
attention layer is applied after discretization, the relational
representational capacity of the model is limited by the learned
symbols.

In the current work, we explicitly compute discrete self-
attention weights from object features and treat them as rela-
tional symbols between objects. Using these discrete relations,
we fuse object symbols in an aggregation function to produce a
single representation for each object, which is then used to pre-
dict the observed, potentially multi-object, effect. This results
in a more powerful architecture, which we named Relational
DeepSym, that can explicitly output the relations between a
varying number of objects while enjoying other properties of
DeepSym. Our experiments in a simulated tabletop scenario

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3350994

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JANUARY 2024

Object encoder

—> z5,8/ > —> 7
/ —> 22’ a—» MLP - 22
o - \
! —>z.a —> - 7 —>h; —> —> e
o —
2 2rizi=h; | —h2 —> —>e
j .
rig «=«- rp Aggregation i :
On\ —>» hn _) —> en
fpn1 =** TI'nn
Relation encoder
i) Relational DeepSym (ours)
o1 —>» —» € hi) —>e
1 1 o7 —>» —>» z5,a/> ho 1
02 —» —> €2 02 —>» —>» Zo,a /> Self - —>e2
: Attention .
h
Oopn —>» op —> —>» Zn,a —» ny —>e,
ii) Vanilla DeepSym iil) Attentive DeepSym
Fig. 1. The proposed model is shown in the top panel. The object and the relational encoders take object features as input and process them in parallel.

The object encoder outputs an object symbol z; for the object o;, and relational encoder outputs the query vector ¢; and the key vector k; which are used
as in Equation 3 to calculate relational symbols. For comparison, we also provide high-level outlines of [9] and [10] in the bottom panel in (ii) and (iii),

respectively.

show that (1) Relational DeepSym achieves lower errors than
[9] and [10] for different numbers of objects and actions, (2)
learns not only object symbols but also relational symbols.

II. RELATED WORK

Early symbol grounding studies in robotics (e.g., [12],
[13]) assumed the existence of manually defined symbols that
were effective in plan generation. These studies collected data
from interactions of agents and robots and learned sensor-to-
symbol mappings to ground the pre-defined symbols in the
sensorimotor experience of the robot. In these studies, tran-
sition rules, which are connected by symbolic preconditions
and effects, were defined, and the continuous experience of
the robot was used to map the manually defined symbolic
predicates to the continuous perceptual space of the robots.
Recently, [14] proposed a deep neural network architecture
based on Convolutional Variational Auto-Encoders to discover
visual features that are well-suit for pre-defined recognition
and interaction tasks. [15] used Multi-modal Latent Dirichlet
Allocation (MLDA) to learn the mapping between multi-modal
sensory experience and preconditions and post-conditions of
actions of a robot. We argue that pre-defining symbols in
unknown and changing environments is not possible, and as
stated by [16], symbols should instead “be formed in relation
to the experience of agents, through their perceptual/motor
apparatuses, in their world and linked to their goals and
actions”.

Unsupervised discovery of discrete symbols and rule learn-
ing from the continuous sensorimotor experience of embodied

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

agents has been recently studied in robotics in order to equip
robots with advanced reasoning and planning capabilities [2],
[1]. [17] investigated the discovery of sub-symbolic neural
activations that facilitate resource economy and fast learning in
skill transfer but did not address high-level reasoning with dis-
crete symbols. [3], [18] discovered symbols that were directly
used as predicates in precondition and post-condition fields
of action descriptors, represented in Problem Domain Defi-
nition Language (PDDL). This encoding allowed for making
deterministic and probabilistic plans in 2-dimensional agent
environments. The same architecture was extended to a real-
world robotic environment in [4], where symbols representing
absolute global states were learned and used for planning.
[19], on the other hand, learned egocentric symbolic repre-
sentations that enabled the agents to transfer the previously
learned symbols to novel environments directly. [20] considers
learning symbols from object-centric observations, allowing
for a transfer between tasks that share the same types of
objects. Effect clustering techniques and SVM classifiers were
used to discretize the continuous sensorimotor experience of
the agents in these works.

Whereas the previous work addressed learning symbols
from given skills, [21], [22], [23], [24], [25] learned a set
of skills from a set of symbolic predicates and a collection of
demonstrations. [26] considered only the necessary changes
in the predicate set for more compact operators. In follow-
up work, [27] used a surrogate objective for learning state
abstractions that increase planning performance. [5], [28]
discovered discrete symbols and used these symbols in order

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3350994

AHMETOGLU et al.: DISCOVERING PREDICTIVE RELATIONAL OBJECT SYMBOLS WITH SYMBOLIC ATTENTIVE LAYERS 3

(a) (b)

Fig. 2. An example interaction with the environment. Two objects are selected
as pick and place targets. Green and red arrows show possible grasp and
release locations, respectively. (a) pick-place(,—1,00,0). (b) An
example effect.

to generate PDDL rules for planning by again combining effect
clustering techniques to find discrete effect categories and
SVM classifiers to discretize continuous object feature space.
These studies used ad-hoc combinations of several machine
learning methods. On the other hand, [9] provided a more
generic symbol formation engine, which used a novel deep
network architecture that runs at the pixel level and relies
on purely predictive mechanisms in forming symbols instead
of unsupervised clustering techniques. They used an effect
predictor encoder-decoder network that took the object image
and action as input and exploited a binary bottleneck layer
to automatically form object categories. Similar to this work,
[6], [7], [8] also exploited deep neural networks with binary
bottleneck units to find discrete state and effect symbols and
achieve plan generation using these symbols. [29], [30] model
multi-object dynamics using graph neural networks and predict
object relations with a recurrent architecture. Similarly, [31]
learns a latent state-space in a graph structure and a transition
function that can predict object relations between objects after
an action execution given the graph.

Our work differs from previous research as we propose a
new method for learning symbolic representations of objects
and relations between them in a unified architecture. Most
related to [10] that also uses self-attention to model relational
information, our model differs in that it explicitly outputs the
relations between objects. In contrast, in [10], the learned
relations are opaque to the user.

III. METHODS

The problem definition and our assumptions are given in
Section III-A, the proposed model is explained in Section
III-B, and the differences with previous DeepSym architectures
are discussed in Section III-C.

A. Problem Definition

This work deals with the problem of learning symbolic
representations of objects and relations between them from
continuous state representations collected by a robot to predict
the effect of its actions. From a developmental learning per-
spective, this study starts off with a basic sensorimotor system

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[32], [33], where the robot can locate objects, and pick and
place them on top of each other.

We consider an environment represented by a set of ob-
ject features O = {oy,...,0,} where 0; € R% is a d,-
dimensional continuous-valued vector for the ith object’s
features and n is the number of objects which can vary through
multiple environment instances. Without any loss of generality,
we define object features as the combination of (1) the object
type (e.g., short block, long block), (2) the position (x,y, z)
and the orientation (z,y,z,w) of the object, resulting in a
total of 8 dimensions for each object. However, the method
can be applied to any other modality type (e.g., images, point
clouds) by modifying the networks accordingly as long as the
environment state can be partitioned into a set of objects.

In our experiments, the robot has a single type
of high-level action with different parameterizations:
pick-place(o;, Ay;, 05, Ay;) where o; and o; are the object
to be picked up and the target object, respectively, and Ay;
and Ay; are the y-axis pick and release positions relative
to the center of the object (Figure 2a). Ay; and Ay; can
take discrete values of {—1,0,1} which correspond to 7.5cm
left, center, and 7.5cm right of the object center, respectively.
This results in a total of 9n? grounded actions (i.e., actions
with parameters) for n objects. The robot randomly picks a
grounded action, executes it in the environment, and observes
the new environment state as O’ = {o},...,0,,} where
o} € R is the new object features for the ith object.

The goal is to transform the state vector O = {01,...,0,}
where each o; € R% is a feature vector describing object
i into a set of object symbols Z = {z1,...,2,} and rela-
tional symbols Ry = {rﬁ)’...,r%ﬁ)} where z; € {0,1}¢
is a d,-dimensional binary vector (i.e., an object symbol)
for the ith object and rfj]-c) € {0,1} is a binary value
for the kth relation between the ith and jth objects. Once
we have a symbolic representation Z, R of a given state
O, we can transform the continuously represented interac-
tion data {O™, a® O'W}N | into its symbolic counterpart,
{(ZzD, R, 0@ (Z'® RGN | and learn a set of sym-
bolic transition rules (Z,R) % (Z',R') enabling domain-
independent planning with Al planners to achieve a goal state
(31, [51, [6], [21], [9].

To learn object symbols and relations between objects, we
follow the objective in [5], [9], [10] and train a model to
predict the effect £ = {ey,...,e,} of the executed action
a where e; = 0(0},0;) is defined as the cartesian position
difference between o} and o; before and after the execution
of the action a. In our experiments, we compare the effect
prediction performance of the proposed model with two related
models [9], [10] in a simulated tabletop environment.

B. Relational DeepSym

The top panel in Figure 1 shows a high-level overview of the
proposed model. The model consists of four main components:
(1) an object encoder f, that learns object symbols, (2) a
relational encoder f, that learns relational symbols between
objects (3) an aggregation function that combines information
from multiple objects by multiplying object symbols with

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3350994

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JANUARY 2024

a=pick-place(yellow, 0, red, 0)

a,=pick-place(blue, 0, yellow, 0)

az=pick-place(green, 0, blue, 0)

N NN
_L_L_L_L

Initial state

DeepSym

Attentive

Final state

Relational Final State

-
—

M |
I 4

—_— =
I 4 I 4

Fig. 3. Action sequence prediction results for different models. Top — An example action sequence is shown with the initial state (the input to models) in
the first image and the ground truth final state after executing the action sequence in the fourth image. Rows 2-4 — The final object positions predicted by

each network are shown with a transparent color.

relational symbols, and (4) a decoder g that predicts effect
e; of the executed action a for each object i. As the whole
architecture is differentiable and trained in an end-to-end
fashion to minimize the effect prediction error, we expect the
object and the relational encoders to learn to predict symbols
and relations useful for the decoder to predict the effect.

The object encoder f, outputs a binary vector z; for the ith
object given its features o;:

% = fo(0i) M

To output a discrete vector without removing the differentia-
bility, the activation of the last layer is set to the Gumbel-
sigmoid function [34], [35]. The Gumbel-sigmoid function
approximates a Bernoulli distribution by injecting noise drawn
from Gumbel distribution to the logits, which forces the model
to output in the extremities (i.e., either very low or very high
values) to send a signal in the presence of noise. In our
experiments, f, is a multi-layer perceptron; however, other
differentiable architectures can be used for different modalities
(e.g., convolutional layers to process images)

The relational encoder takes object features {01, 02, ...,0,}
as input and processes them independently to output query and
key vectors {(q1, k1), (¢2,k2),...,(qn, kn)} for each object.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Let @ and K be n x d matrices, each row containing a query
vector ¢; and a key vector k;, respectively. The attention
weights R, which are relational symbols in our case, are
computed as follows:

4> ki =fr(0)

T
R =GumbelSigmoid (QK> 3)
Vd
where d is the dimensionality of the query and key vectors.
This is slightly different from the regular self-attention func-
tion [11] in which the softmax function is used instead of
the Gumbel-sigmoid function. This modification creates two
different behaviors: (1) the use of a sigmoid function instead
of a softmax function allows multiple attention weights to
different objects to be active at the same time (whereas in
softmax, attentions compete with each other), and (2) the
use of the Gumbel-sigmoid function discretizes the attention
weights while preserving differentiability, allowing us to treat
the weights as relational symbols between objects. As in
the object encoder, the relational encoder is a multi-layer
perceptron with two different outputs for the query and the
key. Note that multiple heads R;, Ro, ..., R, can be used to
model different relations between objects.

Vie{1,2,...,n} 2)

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3350994

AHMETOGLU et al.: DISCOVERING PREDICTIVE RELATIONAL OBJECT SYMBOLS WITH SYMBOLIC ATTENTIVE LAYERS 5

In the third step, the aggregation function combines
object symbols {z1,29,...,2,}, relational symbols
{R1,Ra,..., Ry}, and the executed action a to produce
a single representation for each object. The aggregation
function has the following steps:

a; = [(1, AY;) o, =picks (1, AYi) o, =place] 4
Z; = MLP(z;, a;) (5)
H' = R;Z (6)
H=(HH?. . H" (7

fori e {1,...,n} and j € {1,...,k} where object symbols
and the action vector are concatenated in Equation 5, and
the aggregation occurs in Equation 6. To concatenate action-
specific information to each object symbol z; in a permutation-
invariant way, we define a 4-dimensional vector a; (Equation
4) for each object 7 in which the first and the third dimensions
are set to 1 if object ¢ is the picked or placed object,
respectively. For example, consider the action in Figure 2a,
pick-place(os,—1,00,0), which translates as “pick up o3
from its left and place it on top of oy”. Here, as and ag are
set to [1,—1,0,0] and [0, 0, 1,0], respectively, and a; and as
are set to zero vectors.

One can possibly aggregate the input multiple times by
applying Equation 6 more than once to model longer effect
chains. In our experiments, we use a single aggregation
step. Multiple combinations from multiple attention heads are
concatenated in Equation 7 to produce a single representation
h; for each object.

As the final step, the decoder takes the aggregated represen-
tation h; as input and predicts the effect é for each object for
the executed action a. The decoder is a multi-layer perceptron.
The predicted effect is then compared with the ground truth
effect e to compute the mean squared error:

M N

_ 1 o) _ o)
L=qp2 2@ ="y ®

j=1i=1

where M is the batch size, and IV is the number of objects.

C. Comparison with Related Models

As in DeepSym (Figure 1 — bottom left), this architecture
is also an encoder-decoder architecture with discrete bottle-
neck layers. The difference is that the information between
objects is shared in the aggregation function using the learned
attention weights for a more accurate effect prediction for
actions involving several objects. In DeepSym, this can only
be achieved by fixing the number of input objects, whereas
there is no such limitation in the proposed model.

Regarding the architecture in [10] (Figure 1 — bottom right),
the most significant difference is the placement of the self-
attention module. In [10], the self-attention module takes
object symbols (the encoder’s output) as its input and directly
outputs the aggregated representation. This restricts the model
from learning attention weights only from the learned symbols.
In this proposal, attention weights are learned from object
features, making relations more general.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

The second significant difference is the explicit use of
attention weights. In [10], attention weights are used within the
self-attention layer as in the original Transformer architecture
[11]. However, since attention weights are continuous, they
cannot be easily expressed as relational symbols between
objects.

IV. EXPERIMENTS
A. Experiment Setup

1) Environment: We created a tabletop object manipulation
environment for our experiments (Figure 2). The environment
consists of a UR10 robot and two to four objects. These
objects are either short blocks or long blocks with their
physical properties (e.g., size, mass, the friction coefficient)
fixed through the interaction phase. The robot has a single
type of high-level action: grasping and releasing an object on
top of or near another object. We assume that object positions
can be recognized by a separate module, and the robot can
track the cartesian position change of these objects. What is
to be learned is the effect of the executed action on each object
in different configurations.

In our experiments, we first collect a fixed-size dataset
required for the training by interacting with the environment
and then train the model. Note that this procedure can be
turned into a buffer-based training where the model training
and the data collection are done in parallel, similar to many
reinforcement learning setups.

2) Data Collection: At each iteration of the exploration
process, the robot picks a grounded action a, i.e., a specific
parameterization of the action such as pick-place(2, -7.5,
1, 0.0), and executes it in the environment to observe effect
e; of action a on each object i. Object features before the
execution of the action are recorded as the state vector. Here,
object features are object types and poses with respect to
the object frame that is going to be picked, which allows
models to generalize to different object positions. Effects are
the concatenation of (1) the position change of objects after
the pick-up action, and (2) the position change of ob]jects
after the release action: e; = [6(0'P*, oP'™), §(0/P, oP*°)]
resulting in a 6-dimensional vector for each object (Figure 2b).
Such an effect representation filters out the movement effect
of the object from the source location to the target location.
In this way, the effect representation models what happens
‘immediately after the pick-up’ and ‘immediately after the
release’ actions. Object and effect representations might have
been selected as raw images as in [9], [10]; however, we opt
for a simpler setup to compare different architectures in a
controlled environment.

To compare different architectures in different settings, we
collected three datasets that contain exactly two, three, or
four objects. We combine these datasets to create a fourth
dataset that contains a varying number of objects. Each dataset
contains ({01, 02,...,0,},a,{e1,ea,...,e,}) triplets where
n is the number of objects. We collect 120K samples for two
objects, 180K for three objects, and 240K for four objects. We
use 80% of samples for training, 10% for validation, and 10%
for testing.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3350994

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JANUARY 2024

61 = DeepSym 6
[Attentive
[Relational

Error (cm)

2 3 4 5 1 2 3 4 5
Number of actions Number of actions

(a) (b)

1 2 3 4 5 1 2 3 4 5
Number of actions Number of actions

(c) (d)

Fig. 4. Prediction errors for different models as the number of actions increases. (a) 2 objects. (b) 3 objects. (c) 3 objects. (d) 2-4 objects.

TABLE I
EFFECT PREDICTION RESULTS FOR DIFFERENT METHODS

Dataset DeepSym Attentive Relational
2 objects 222 £056 0.89 £0.10 0.50 £ 0.03
3 objects 3.06 £ 0.16 255+ 0.09 1.67 £ 0.02
4 objects 426 £ 068 275+ 0.12 2.00 £ 0.04
2-4 objects 2.38 £ 025 1.86 = 0.12 1.35 & 0.04

3) Baselines: We compare our method with [9] and [10].
As the vanilla DeepSym architecture requires a fixed-size
input and output, we modified it to make it suitable for
our experiments. Namely, a maximum number of objects is
determined for a given training session. Then, the input (and
the output) vector is reshaped into [Ograsped; Oreleased ; Orest] Where
Ograsped aNd Oreleased are the object features of the grasped and
released objects, respectively, and oy is the object features
of the remaining objects.

4) Training Details: All architectures are trained with the
same hyperparameters throughout the text unless mentioned
otherwise. We train models for 4000 epochs with five rep-
etitions with different seeds. Adam optimizer [36] is used
with a batch size of 128 and a learning rate of 0.0001. All
network components (e.g., encoder, decoder) consist of two
hidden layers with 128 hidden units. The number of attention
heads for attentive models is set to four. We clip gradients
by their norm to 10. Extended experimental details (training
logs, layer gradients, and other training options) can be found
at Weights & Biases! [37].

B. Effect Prediction Results

Firstly, we compare effect prediction results for different
datasets in Table I?. The reported results are absolute errors
summed over all dimensions (three dimensions for the pick-
up effect and three dimensions for the release effect). The
results show that the proposed method achieves significantly
lower errors than others. Moreover, the variance is lower than
others, indicating that Relational DeepSym is more robust to
different seeds.

Errors increase as the number of objects increases. This is
expected since the number of unique effects increases with the

Uhttps://api.wandb.ai/links/alper/xvpcogul

2Averaged over five runs. Units are in centimeters. Welch’s t-test [38] shows
significant differences (p < 0.02 for all cases) between the proposed method
and others.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[DeepSym 251 T
[Attentive ﬁz‘@ """" 1? """"" =
z 1 Relational |~
= == f = R =
Wa —a “1s5 ?
B [Attentive
[Relational
0
0.2 04 06 0.8 1 1.0 1 2 3 4
Dataset percentage Number of Attention Heads
(@) (b)

Fig. 5. Prediction errors for different models as (a) the number of samples
and (b) attention heads increase.

number of objects as the robot creates more complex structures
in random exploration. Choosing the exploration schedule in
a guided way, similar to experience replay in reinforcement
learning [39], would be a promising future direction.

To compare the sample efficiency, we train each model on
a subset of the full train set that is composed of interactions
with two to four objects (432K samples in total) and evaluate
the effect prediction performance on the full test set. Figure
5a shows the prediction errors over five runs for different
models as the number of samples increases. Each model is
trained for 1000 epochs except for the full train set where we
train for 4000 epochs. The results show that the performances
of Attentive DeepSym and Relational DeepSym increase in
a similar fashion with the increasing sample size. However,
the overall performance of Relational DeepSym is better than
Attentive DeepSym on all sample sizes. This suggests that
a bottleneck (in this case, the discrete representation) with a
set of object symbols and relational symbols is more sample
efficient than the one with only object symbols. In Attentive
DeepSym, the bottleneck is essentially a set of object symbols,
and relations are implicitly learned from these symbols (see
Figure 1 — bottom right). On the other hand, in Relational
DeepSym, the object and the relational symbols are processed
independently from each other (f, and f, in Figure 1 — top)
and combined in the aggregation function.

Next, we analyze the effect of the number of attention
heads on the prediction performance. Figure 5b shows the
prediction errors for Attentive and Relational DeepSym for 1
to 4 attention heads. We see that the performance of Attentive
DeepSym remains the same for different numbers of heads. As
the discrete bottleneck in Attentive DeepSym is not relations
but object symbols, the number of attention heads does not

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3350994

AHMETOGLU et al.: DISCOVERING PREDICTIVE RELATIONAL OBJECT SYMBOLS WITH SYMBOLIC ATTENTIVE LAYERS 7

TABLE II
EFFECT PREDICTION RESULTS WITH DIFFERENT ACTIVATIONS

w/o rounding w/ rounding

Gumbel-sigmoid 1.34 £+ 0.09 1.83 + 0.41
Gumbel-softmax 1.66 £+ 0.16 2.70 4+ 0.61
Sigmoid 1.32 + 0.04 24.03 + 3.71
Softmax 1.35 £+ 0.03 23.26 + 2.83

affect the effect prediction accuracy. However, the performance
of Relational DeepSym increases with the increasing number
of attention heads—the number of relations—since the model
capacity increases with multiple relations in the aggregation
step. The number of attention heads is a hyperparameter that
needs to be tuned for each problem by finding the plateau
in the performance, as done in [9] for the dimensionality of
object symbols.

C. Action Sequence Prediction

In this section, using the effect predictions {é1,...,¢é,} of
models, we predict the next state {0,...,0],} by adding the
prediction back into the position part of the state vector. Firstly,
the predicted pick-up and release effects are summed with
the state vector. Then, the movement from the pick-up to the
release position is added for objects that are predicted to be
picked up. This way, given an initial state, we can predict
the final state the robot reaches after executing a sequence
of actions. Here, the challenge is to understand what happens
when an object is lifted and released on top of another object
in the presence of multiple objects.

Figure 3 shows action sequence prediction examples. Rela-
tional DeepSym’s predictions are more accurate than others,
especially in the z-axis, the most significant axis in these
experiments. This shows that the proposed model understands
that the presence of an object on top of another object will
change the action results.

In Figure 4, we analyze how models perform as the number
of actions increases. We see that Relational DeepSym shows a
slightly lower error than others. Errors increase for all models
when the number of actions increases. This is an expected
result since we add the effect prediction back into the state
vector, effectively cascading the error over multiple steps.

D. Comparing Different Activations for Relations

In this section, we compare the performance of the Gumbel-
sigmoid activation used for learning relational symbols with
sigmoid, softmax, and Gumbel-softmax functions. Although
Gumbel-sigmoid is also used for learning object symbols as
well, we rather focus and ablate on the relational part. We train
a Relational DeepSym model with the same hyperparameters
as in Section IV-A except for the activation function used in
Equation 3 to compute object-object relations.

We report errors on the test set for different activations in
Table II. Since learning a symbolic definition of the envi-
ronment is a requirement that we want to satisfy to enable
domain-independent planning with off-the-shelf AI planners
[31, [5], [6], [21], [9], we can only use discrete outputs that

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

are rounded to either O or 1 at inference time. As such, we
report two different results: (1) without rounding and (2) with
rounding. The results show that using Gumbel-sigmoid for
learning relational symbols achieves lower errors in terms of
effect prediction. This is expected since Gumbel-sigmoid is
designed to approximate a Bernoulli distribution, which is
in accordance with the distribution of pairwise relations; an
object-object relation is either active or inactive.

V. CONCLUSION

In this paper, we proposed a new method to simultaneously
learn object symbols and relations between objects in a single
architecture. Namely, discrete attention weights are computed
from object features to model relations between objects. As
these weights are discrete, they can be regarded as relational
symbols between objects. Such a feature is desirable because
it allows us to model the environment with object symbols
and relations between objects, which was not available previ-
ously [9], [10]. We showed that the proposed model achieves
significantly lower errors than others in predicting the effects
of (possibly a sequence of) actions on a varying number of
objects and produces meaningful symbols that allow us to
model the relations between objects for settings where the
number of objects can vary.

As the next step, we plan to convert the learned symbols
into PDDL operators [40] for domain-agnostic planning with
off-the-shelf planners. Rules defined with learned symbols can
be generated by a tree learning approach in which the features
would be the binding of variable names to the symbol values,
and the labels would be unique symbolic effects (unique
changes in object symbols and relations). Alternatively, these
operators can be learned by partitioning the symbolic dataset
as in [22]. Such a conversion will remove the cascading of
errors in action sequence prediction and allow for a fast search
in the symbolic space by removing the need to use a neural
network.

In the current report, we focused on the formation of
discrete representation of continuous action-effect relations
in a tabletop scenario. One future direction is to test the
generalization effectiveness of the obtained discrete relations
in more complex manipulation setups. In our experiments, we
used the positional change of objects as the effect of an action,
which we plan to extend to include orientation difference in
SO(3). Learning action primitives, such as pick and place,
together with object symbols is another promising direction
that would allow the method to be applied to tasks where
actions cannot be given apriori.

REFERENCES

[11 G. Konidaris, “On the necessity of abstraction,” Current opinion in
behavioral sciences, vol. 29, pp. 1-7, 2019.

[2] T. Taniguchi, E. Ugur, M. Hoffmann, L. Jamone, T. Nagai, B. Rosman,
T. Matsuka, N. Iwahashi, E. Oztop, J. Piater, et al., “Symbol emergence
in cognitive developmental systems: a survey,” IEEE transactions on
Cognitive and Developmental Systems, vol. 11, no. 4, pp. 494-516, 2018.

[3] G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “Constructing sym-
bolic representations for high-level planning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 28, no. 1, 2014.

[4]

[6]

[7]

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3350994

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JANUARY 2024

G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From skills
to symbols: Learning symbolic representations for abstract high-level
planning,” Journal of Artificial Intelligence Research, vol. 61, pp. 215—
289, 2018.

E. Ugur and J. Piater, “Bottom-up learning of object categories, action
effects and logical rules: From continuous manipulative exploration to
symbolic planning,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA). 1EEE, 2015, pp. 2627-2633.

M. Asai and A. Fukunaga, “Classical planning in deep latent space:
Bridging the subsymbolic-symbolic boundary,” in Proceedings of the
aaai conference on artificial intelligence, vol. 32, no. 1, 2018.

M. Asai and C. Muise, “Learning neural-symbolic descriptive planning
models via cube-space priors: The voyage home (to strips),” arXiv
preprint arXiv:2004.12850, 2020.

M. Asai, H. Kajino, A. Fukunaga, and C. Muise, “Classical planning in
deep latent space,” Journal of Artificial Intelligence Research, vol. 74,
pp. 1599-1686, 2022.

A. Ahmetoglu, M. Y. Seker, J. Piater, E. Oztop, and E. Ugur, “Deepsym:
Deep symbol generation and rule learning for planning from unsu-
pervised robot interaction,” Journal of Artificial Intelligence Research,
vol. 75, pp. 709-745, 2022.

A. Ahmetoglu, E. Oztop, and E. Ugur, “Learning multi-object symbols
for manipulation with attentive deep effect predictors,” arXiv preprint
arXiv:2208.01021, 2022.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

K. Mourao, R. P. Petrick, and M. Steedman, “Using kernel perceptrons
to learn action effects for planning,” in International Conference on
Cognitive Systems (CogSys 2008). Citeseer, 2008, pp. 45-50.

F. Worgétter, A. Agostini, N. Kriiger, N. Shylo, and B. Porr, “Cognitive
agents—a procedural perspective relying on the predictability of object-
action-complexes (oacs),” Robotics and Autonomous Systems, vol. 57,
no. 4, pp. 420-432, 2009.

A. Dehban, S. Zhang, N. Cauli, L. Jamone, and J. Santos-Victor, “Learn-
ing deep features for robotic inference from physical interactions,” IEEE
Transactions on Cognitive and Developmental Systems, 2022.

F. S. Lay, A. S. Bauer, A. Albu-Schiffer, F. Stulp, and D. Leidner,
“Unsupervised symbol emergence for supervised autonomy using multi-
modal latent dirichlet allocations,” Advanced Robotics, vol. 36, no. 1-2,
pp. 71-84, 2022.

R. Sun, “Symbol grounding: a new look at an old idea,” Philosophical
Psychology, vol. 13, no. 2, pp. 149-172, 2000.

A. Ahmetoglu, E. Ugur, M. Asada, and E. Oztop, “High-level features
for resource economy and fast learning in skill transfer,” Advanced
Robotics, vol. 36, no. 5-6, pp. 291-303, 2022.

G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “Symbol acquisition
for probabilistic high-level planning,” in International Joint Conference
on Artificial Intelligence, 2015.

S. James, B. Rosman, and G. Konidaris, “Learning portable representa-
tions for high-level planning,” in International Conference on Machine
Learning. PMLR, 2020, pp. 4682-4691.

——, “Autonomous learning of object-centric abstractions for high-level
planning,” in International Conference on Learning Representations,
2021.

T. Silver, R. Chitnis, J. Tenenbaum, L. P. Kaelbling, and T. Lozano-
Pérez, “Learning symbolic operators for task and motion planning,”
in 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2021, pp. 3182-3189.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]
(36]
[37]

[38]

[39]

[40]

R. Chitnis, T. Silver, J. B. Tenenbaum, T. Lozano-Perez, and L. P. Kael-
bling, “Learning neuro-symbolic relational transition models for bilevel
planning,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2022, pp. 4166—4173.

T. Silver, A. Athalye, J. B. Tenenbaum, T. Lozano-Perez, and L. P.
Kaelbling, “Learning neuro-symbolic skills for bilevel planning,” in
Conference on Robot Learning (CoRL), 2022.

A. Li and T. Silver, “Embodied active learning of relational state
abstractions for bilevel planning,” arXiv preprint arXiv:2303.04912,
2023.

J. Achterhold, M. Krimmel, and J. Stueckler, “Learning temporally
extended skills in continuous domains as symbolic actions for planning,”
in Conference on Robot Learning. PMLR, 2023, pp. 225-236.

N. Kumar, W. McClinton, T. Lozano-Pérez, and L. P. Kaelbling, “Over-
coming the pitfalls of prediction error in operator learning for bilevel
planning,” in RSS 2023 Workshop on Learning for Task and Motion
Planning, 2023.

T. Silver, R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Pérez,
L. Kaelbling, and J. B. Tenenbaum, ‘“Predicate invention for bilevel plan-
ning,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 37, no. 10, 2023, pp. 12 120-12129.

E. Ugur and J. Piater, “Refining discovered symbols with multi-step in-
teraction experience,” in 2015 IEEE-RAS 15th International Conference
on Humanoid Robots (Humanoids). 1EEE, 2015, pp. 1007-1012.

A. E. Tekden, A. Erdem, E. Erdem, M. Imre, M. Y. Seker, and E. Ugur,
“Belief regulated dual propagation nets for learning action effects on
groups of articulated objects,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2020, pp. 10556-10562.
A. E. Tekden, A. Erdem, E. Erdem, T. Asfour, and E. Ugur, “Object
and relation centric representations for push effect prediction,” arXiv
preprint arXiv:2102.02100, 2021.

Y. Huang, A. Conkey, and T. Hermans, “Planning for multi-object
manipulation with graph neural network relational classifiers,” in 2023
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2023, pp. 1822-1829.

E. Ugur, Y. Nagai, E. Sahin, and E. Oztop, “Staged development of
robot skills: Behavior formation, affordance learning and imitation with
motionese,” IEEE Transactions on Autonomous Mental Development,
vol. 7, no. 2, pp. 119-139, 2015.

E. Ugur, Y. Nagai, H. Celikkanat, and E. Oztop, “Parental scaffolding as
a bootstrapping mechanism for learning grasp affordances and imitation
skills,” Robotica, vol. 33, no. 5, pp. 1163-1180, 2015.

C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution:
A continuous relaxation of discrete random variables,” arXiv preprint
arXiv:1611.00712, 2016.

E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

L. Biewald, “Experiment tracking with weights and biases,” 2020,
software available from wandb.ai. [Online]. Available: https://wandb.ai/
B. L. Welch, “The generalization of ‘student’s’problem when several
different population varlances are involved,” Biometrika, vol. 34, no.
1-2, pp. 28-35, 1947.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram,
M. Veloso, D. Weld, D. W. SRI, A. Barrett, D. Christianson, et al.,
“Pddl— the planning domain definition language,” Technical Report,
Tech. Rep., 1998.

