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a b s t r a c t

Learning to interact with the environment not only empowers the agent with manipulation capability
but also generates information to facilitate building of action understanding and imitation capabilities.
This seems to be a strategy adopted by biological systems, in particular primates, as evidenced by the
existence of mirror neurons that seem to be involved in multi-modal action understanding. How to
benefit from the interaction experience of the robots to enable understanding actions and goals of
other agents is still a challenging question. In this study, we propose a novel method, deep modality
blending networks (DMBN), that creates a common latent space from multi-modal experience of a
robot by blending multi-modal signals with a stochastic weighting mechanism. We show for the first
time that deep learning, when combined with a novel modality blending scheme, can facilitate action
recognition and produce structures to sustain anatomical and effect-based imitation capabilities. Our
proposed system, which is based on conditional neural processes, can be conditioned on any desired
sensory/motor value at any time step, and can generate a complete multi-modal trajectory consistent
with the desired conditioning in one-shot by querying the network for all the sampled time points
in parallel avoiding the accumulation of prediction errors. Based on simulation experiments with
an arm-gripper robot and an RGB camera, we showed that DMBN could make accurate predictions
about any missing modality (camera or joint angles) given the available ones outperforming recent
multimodal variational autoencoder models in terms of long-horizon high-dimensional trajectory
predictions. We further showed that given desired images from different perspectives, i.e. images
generated by the observation of other robots placed on different sides of the table, our system
could generate image and joint angle sequences that correspond to either anatomical or effect-based
imitation behavior. To achieve this mirror-like behavior, our system does not perform a pixel-based
template matching but rather benefits from and relies on the common latent space constructed by
using both joint and image modalities, as shown by additional experiments. Moreover, we showed that
mirror learning (in our system) does not only depend on visual experience and cannot be achieved
without proprioceptive experience. Our experiments showed that out of ten training scenarios with
different initial configurations, the proposed DMBN model could achieve mirror learning in all of
the cases where the model that only uses visual information failed in half of them. Overall, the
proposed DMBN architecture not only serves as a computational model for sustaining mirror neuron-
like capabilities, but also stands as a powerful machine learning architecture for high-dimensional
multi-modal temporal data with robust retrieval capabilities operating with partial information in one
or multiple modalities.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

With appropriate and sufficient amount of data, a range of
sensorimotor learning tasks encountered by robots and biological
systems can be solved by deep learning. However, unlike the
abundance of data for image recognition and language
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odeling, robots and biological systems often need to harvest
ata themselves by either using self-exploration based learning
r by observing the relevant behaviors of other agents. These
wo alternatives are studied in robotics and machine learning
nder the general titles of Reinforcement Learning (RL) (Sutton
Barto, 2018) and Learning from Demonstration (LfD) (Argall,

hernova, Veloso, & Browning, 2009). Although the use of self-
bservation during self-executed actions is common for forming
reward signal in RL, how to benefit the agent in a cognitive
evelopmental sense is not well addressed. For example, for rec-
gnizing actions of others or forming a general imitation capacity.
earning to interact with the environment not only empowers
he agent with manipulation capability but also generates in-
ormation to facilitate the building of action understanding and
mitation capabilities. This seems to be a strategy adopted by
iological systems, in particular primates, as evidenced by the ex-
stence of mirror neurons (Di Pellegrino, Fadiga, Fogassi, Gallese,
Rizzolatti, 1992; Rizzolatti, Fadiga, Gallese, & Fogassi, 1996)

n the ventral premotor cortex of those animals, which encode
ctions in a multi-modal fashion (Kohler, Keysers, Umilta, Fogassi,
allese, & Rizzolatti, 2002). For example, there are mirror neurons
hat become active when the animal breaks a peanut, observes
n experimenter do the same act or hears the sound of peanut
racking (Keysers, Kohler, Umilta, Nanetti, Fogassi, & Gallese,
003). With such a system, sensed actions are mapped to one’s
wn motor representation; and thus can bootstrap imitation, by
or example, understanding the parts of an observed act in terms
f the existing ‘action vocabulary’ of the animal, which can be
eproduced in sequence yielding novel action imitation capability.
lthough, it is not clear whether mirror neurons play a role in im-
tation, as their exact function and mechanism are far from clear,
omputational modeling may help produce insights towards un-
erstanding them (Oztop, Kawato, & Arbib, 2013). Therefore, from
scientific and also technological point of view, it is desirable to
evelop a neural multi-modal action representation system that
an learn/store actions and recall them from partial information
hat might be transformed as in the case of action observation
rom different perspectives. In fact, there exist a range of com-
utational models related to mirror neurons and their function
n the literature (Bonaiuto & Arbib, 2010; Bonaiuto, Rosta, &
rbib, 2007; Copete, Nagai, & Asada, 2016a; Demiris & Johnson,
003; Oztop & Arbib, 2002; Tani, Ito, & Sugita, 2004) that have
everaged our understanding by creating hypotheses to be tested.
ow, the time is ripe for a less constrained, end-to-end and
ore powerful multi-modal action representation mechanism for
btaining better insights. In particular, the existing multi-modal
ction representation schemes based on self-observation either
all short of providing robust recognition and imitation capability
r rely on feature engineering.
In this study, we improve the state of the art in multi-modal

ction representation by showing for the first time that deep
earning, when combined with a novel modality blending scheme,
an facilitate feature-engineering-free action recognition and ba-
ic imitation capabilities under perspective changes with only
artial information. Moreover, the modality blending scheme
roduces latent representations that can sustain both anatom-
cal and effect-based imitation capabilities. We call the devel-
ped multi-modal action representation architecture as a Deep
odality Blending Network (DMBN).
DMBN connects multiple modalities by blending them as

andom mixtures of modality-specific latent representations to
orm a common latent representation for seamless transfer from
ne modality to another (see Fig. 1). The DMBN architecture fol-
ows an encoder–decoder structure where each modality is sum-
arized by its corresponding encoder network, processing the

ensorimotor data into a compact latent representation. While
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learning, not only these latent representations are formed but
they are blended together into a common representation through
stochastic mixture weights. After learning, using the common
representation, each decoder network can predict the corre-
sponding modality for an arbitrary desired time step, effectively
generating outcome predictions as temporal sequences for all the
modalities. In this sense, the common latent layer in our network
encodes representation of the complete multi-modal trajectories
rather than encoding modalities in particular time steps. This
feature sets our system apart from its competitors (Copete et al.,
2016a; Zambelli, Cully, & Demiris, 2020) and give it a big ad-
vantage. To be concrete, our system can be conditioned on any
desired sensory/motor value at any time step, and can generate
a complete multi-modal trajectory consistent with the desired
conditioning in one-shot by querying the network for all the sam-
pled time points in parallel. DMBNs make temporal predictions
independently for each query point in one-shot without requiring
feeding back of the output as input. This one-shot full trajectory
decoding ability makes our system very accurate as it does not
suffer from the error accumulation faced by systems that need to
chain next-state predictions in order to generate full trajectories.

To demonstrate the efficacy of the proposed DMBN architec-
ture, we implemented it in a simulated manipulation setup. In
this setup, an object was placed in the middle of a table, and
an arm-gripper robot was set to execute grasp and push actions
on it with different approach directions. The robot observed the
consequences of its actions using an RGB camera from a fixed per-
spective, and learned the generated multi-modal sensory (visual
and proprioceptive) signals as sensory trajectory distributions
through the proposed DMBN architecture. After learning,

• Given desired images at any time point (such as images
of objects lifted or pushed away), our system can find the
joint trajectories that are required to generate changes in
the environment to observe these images;

• Given joint angles at any time point(s), our system can
generate the sequence of images that are expected to be ob-
served during the execution of the action that is consistent
with given angles;

• Given desired images from different perspectives, i.e. images
generated by the observation of other robots placed on
different sides of the table, our system can generate image
and joint angle sequences that correspond to valid actions
of the robot;

• Those valid actions, intriguingly correspond to either anatom
ical or effect based imitation behavior.

To clarify the last bullet above it would be useful to consider an
example behavior observed in our simulations. Given an image
that shows the snapshot of another robot on the other side of
the table pulling the object to itself, our system can generate
the sequence of images where its gripper pulls the object to-
wards itself (anatomical imitation behavior) or pushes the object
towards the other side of the table (effect based imitation or goal-
emulation behavior) depending on the visual cues available to
the robot. In our analysis, we show that the prediction capability
of the proposed DMBN system does not simply perform a pixel-
based template matching but rather benefits from and relies on
the common latent space constructed by using both joint and
image modalities. In addition to other interesting results, our
experiments clearly show that our system outperforms a recent
multimodal variational autoencoder model (Zambelli et al., 2020)
in reconstructing long-horizon high-dimensional trajectories.

The outline of this paper is as follows: in Section 2, we review
the related work, in particular, LfD systems as DMBN builds
upon one such system and the competing multi-modal action
representations. In Section 3, we describe our proposed method
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Fig. 1. General architecture of a Deep Modality Blending Network.
n detail. We explain our experiment setup in Section 4 and give
xperimental results in Section 5. Finally, we give a conclusion in
ection 6.

. Related work

Imitation learning, or learning from demonstration (LfD) (Ar-
all et al., 2009), has been a popular research topic in robotic
earning (Asfour, Azad, Gyarfas, & Dillmann, 2008; Ben Amor,
roemer, Hillenbrand, Neumann, & Peters, 2012; Mühlig, Gienger,
Steil, 2012; Paraschos, Daniel, Peters, & Neumann, 2018; Pastor,
offmann, Asfour, & Schaal, 2009; Pastor, Righetti, Kalakrishnan,
Schaal, 2011). Various LfD methods have been proposed based
n dynamic systems and statistical modeling (Calinon, 2016;
uang, Rozo, Silvério, & Caldwell, 2019; Schaal, 2006; Zhou &
sfour, 2017), where the parameters in the environment can be
earned with Locally Weighted Regression (Atkeson, Moore, &
chaal, 1997; Kramberger, Gams, Nemec, Chrysostomou, Mad-
en, & Ude, 2017; Ude, Gams, Asfour, & Morimoto, 2010) and
ocally Weighted Projection Regression (Vijayakumar & Schaal,
000). Gaussian Mixture Models (Calinon, Evrard, Gribovskaya,
illard, & Kheddar, 2009; Pervez & Lee, 2018) and Hidden Markov
odels (Chu et al., 2013; Girgin & Ugur, 2018; Lee & Ott, 2011;
gur & Girgin, 2020) are also frequently used to learn the motion
istributions from multiple demonstrations. More recently, deep
eural networks also started to be used in imitation learning
o learn movement primitives from complex high-dimensional
ata (Droniou, Ivaldi, & Sigaud, 2015; Pahič, Gams, Ude, & Mo-
imoto, 2018; Pervez, Mao, & Lee, 2017; Xie, Chowdhury, De Pao-
is Kaluza, Zhao, Wong, & Yu, 2020). In our earlier work, we
roposed Conditional Neural Movement Primitives (CNMPs) (Ak-
ulut, Bozdogan, Tekden, & Ugur, 2021; Akbulut, Oztop, Seker,
ue, Tekden, & Ugur, 2020; Seker, Imre, Piater, & Ugur, 2019)
s an end-to-end deep LfD architecture that can learn temporal
ensorimotor distributions of complex manipulation skills. Based
n Conditional Neural Processes (Garnelo et al., 2018), CNMPs are
eep learning from demonstration frameworks that use stochas-
ic observation sampling and query prediction to learn complex
emporal data. CNMPs are able to learn and generalize high-
imensional data due to their deep encoder–decoder architecture.
he stochastic observation sampling used in the training pro-
ess makes it possible to learn from a few examples. The most
istinctive feature of CNMPs compared to the other approaches
s the observation-query mechanism that allows the framework
o collect observations and query predictions on any time-steps.
ontrary to the other methods using recurrent models which are
ound to their own outputs for the future predictions, CNMPs
an make predictions for any time-steps independently before
r after the given observations. The DMBN architecture devel-
ped in the current study builds upon CNMPs by introducing a
ovel mechanism for modality blending to learn a common latent
epresentation that allows cross-modal temporal prediction with
artial information.
Several works studied the emergence of the mirror neuron

ystem (MNS) in the context of multi-modal sensor fusion. Nagai,
awai, and Asada (2011) proposed a computational model for
he early development of the MNS. In this model, the robot

annot make self-other discrimination in the early stages due to
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the immature visual system. As the visual system develops, the
robot starts to discriminate between itself and others, yet, still
retains information regarding early experiences, producing the
MNS as a by-product. Noda, Arie, Suga, and Ogata (2014) used
time-delay neural networks (Waibel, Hanazawa, Hinton, Shikano,
& Lang, 1989) as autoencoders to fuse multiple modalities and
reconstruct the missing ones given others.

Copete, Nagai, and Asada (2016b) also used a similar autoen-
coder architecture in a predictive learning context so to imagine
the action of others. Jung, Matsumoto, and Tani (2019) proposed
a top-down visual attention system to address the long-term
visual prediction problem. In this system, the visual stream is
divided into dorsal and ventral streams to decompose the diffi-
culty of the problem into two sub-problems. These two streams
are then merged for the visual prediction with the help of an
external visuospatial memory which holds long-term visuospa-
tial information. On the other hand, we provide a more holistic
approach where there are only different submodules for different
modalities. Our experiments show that DMBNs can output very
accurate visual signals conditioned only on a single visual frame
without any memory module. Among these studies, the learning
problems considered in the work of Zambelli et al. (2020) is well-
aligned with our study. They proposed a multimodal variational
autoencoder (MVAE) (Suzuki, Nakayama, & Matsuo, 2016; Wu &
Goodman, 2018) to fuse the sensorimotor information of an iCub
humanoid robot for prediction and control. They showed that by
training MVAE as a denoising autoencoder (Vincent, Larochelle,
Bengio, & Manzagol, 2008), MVAE can predict the future senso-
rimotor states, reconstruct the missing modalities, and imitate
based on human action observation. As MVAE is not a recurrent
architecture, the temporal information should be explicitly stated
in the input. To be concrete, in the training phase, the sensorimo-
tor information at time t and t + 1 were combined and given as
input to the MVAE for reconstruction. Here, some sensorimotor
information at time t + 1 was randomly masked with −2 (as in
a denoising autoencoder) to train the network to reconstruct the
future time step even if it was partially missing.

In the testing phase for future state predictions, states at t +1
were filled with mask values −2. Further steps could be predicted
by feeding the output of the MVAE to the input. However, the
error at one step cascades in the feedback loop as in RNNs. There-
fore, the prediction power decreases as the trajectory horizon
increases. This is not the case in our proposed model as DMBNs
make temporal predictions in one-shot without requiring feeding
back of the output as input. To concretely state, our work differs
from the previous works in terms of modality fusion strategy
and architecture: (1) we force the formation of a more common
and robust representation space by taking stochastic mixtures of
modalities during training, and (2) we learn individual modalities
and their mixture as long range dependencies via CNPs (Garnelo
et al., 2018), which allow arbitrary future and past temporal
predictions. These key differences yield not only a more robust
and better performing multi-modal action representation system,
but also give rise to interesting generalization abilities as shown

with the experiments presented in the Results section.
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Fig. 2. Proposed framework for given visual and joint modalities. Image and joint observations are turned into their latent representations separately to be used to
redict the image and joint positions given at another target time step.
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. Method

In this work, we propose Deep Modality Blending Networks1
DMBNs), that can learn and produce sensorimotor signals by
orming and exploiting multi-modal representations acquired in
latent space. Assume M = {visual, proprioception, sound, haptic

..} corresponds to sensorimotor signals from multiple modalities
ollected by an agent through self-observation. The agent inter-
cts with the environment using a variety of actions to leverage
he information produced by the embodied interaction of the
gent with the environment. In the current implementation, the
ction and action parameters are sampled from a predefined ac-
ion repertoire. During every interaction, the sensorimotor values
re recorded at each time step. The multi-sensorimotor interac-
ion data set is defined as I , and the ith interaction is described
s Ii = {(t, SMt )}Tt=0, where t is time and SMt is the sensorimotor
tate collection for the given time step. SMt consists of multiple
ensorimotor data, SMt = [Svisual

t , S jointt , Ssoundt , Shaptict , . . .], where
ach member holds the corresponding state values of the sensori-
otor modalities for the time step t . Fig. 2 shows the architecture
f our model where the modalities in the system correspond to
he visual and proprioceptive domains. These two domains are
hosen specifically in order to show that our system can learn
n an end-to-end fashion with both high (image) and low (joint)
imensional data and make more accurate target predictions on
long horizon compared to the sequential prediction models.

n theory, all types of sensorimotor data can be included in the
ystem with our formulation.
The aim of DMBN is to predict a conditional output distri-

ution for a target query given a desired set of observation
amples. At the beginning of each training iteration, an inter-
ction Id is selected randomly from the data set I . From this
elected interaction, n data points of (t, SMt ), are randomly sam-
led as observations. Here, n is a changing number for each
raining iteration that is bounded by [1, obsmax] where obsmax is a
yper-parameter that decides the maximum number of sampled
bservations in the training. We define this sampled observation
et as OM

= {(ti, SMti )}
obsmax
i where (ti, SMti ) ∈ Id. On the left

ide of Fig. 2.(I), example sampled observations Oimage and Ojoint

1 Our implementation of DMBN is available at https://github.com/
yunusseker/Deep-Modality-Blending-Networks.
 i
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are shown for the image and the joint domains. Besides OM , a
arget tuple (ttarget , SMttarget ) is also sampled from the same selected
interaction Id. The purpose of a training iteration is to learn
distributions on ttarget for all modalities in the system, based on
the observation set OM .

Our aim is to merge the observations of all the modality signals
in a single latent space to allow information sharing for a higher
quality prediction. In order to achieve this, the observations of
each modality, Om, are first transformed into their latent repre-
sentations Rm

i . For every modality m and every observation, latent
states are calculated by the following equation:

Rm
i = Em((ti, Smti ) | θm) (ti, Smti ) ∈ Om,m ∈ M (1)

where Em is a deep encoder for the modality m with weights
θm, and Rm

i is the latent states of its ith observation. Fig. 2.(I)
shows the encoded representations, Rimage

i and Rjoint
i , for each

observation. After generating these representations, an averaged
representation of each modality is calculated by:

Rm
=

1
n

n∑
i

Rm
i m ∈ M (2)

where n is the size of the observations of this training iteration.
Rimage and Rjoint in Fig. 2(II) hold general knowledge about their
modalities, and our aim is to use these representations in a shared
latent space to allow information sharing between all modalities.
To achieve this, a multi-modal general representation R that in-
tegrates all modalities is constructed by calculating a normalized
weighted average:

R =

∑M
m pmRmwm∑M
m pmwm

(3)

where wM
= [wimage, wjoint , wm, . . .] is a vector representing

the weight or availability of the individual modalities with 0 ≤

wM
≤ 1 and wM

̸= 0, which could be used to model cases
here one modality is more reliable than the other. On the other
and, modality blending during training is achieved through the
andom variables 0 ≤ pm ≤ 1 that is sampled at every iteration,
nd obey the constraint

∑
pm = 1. Note that to avoid

∑M
m pmwm

ver becoming zero (See Eq. (3)), we may require pm > 0; but
his is not an issue in practice. This follows the same intu-
tion with dropout (Srivastava, Hinton, Krizhevsky, Sutskever, &

https://github.com/myunusseker/Deep-Modality-Blending-Networks
https://github.com/myunusseker/Deep-Modality-Blending-Networks
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Fig. 3. (Left) Experiment setup with vision sensor, UR5, and the object at the middle of the table. (Right) Example grasping and pushing actions recorded via the
vision sensor.
Salakhutdinov, 2014); randomly dropping modalities forces the
model to learn compact representations that can compensate
for missing information. Fig. 2.(III) shows this process as a two-
modality setup where wimage

= wjoint
= 0.5 and pimage

=

and pjoint = 1 − p where p is sampled uniformly from [0,
]. Note that the dimension of each Rm should be the same in

order to perform summation operation between vectors, so in
the first place, all the encoders must be designed to produce the
latent states with the same dimensions. Once all observations are
merged into one general representation, this information can be
used to infer target distributions on ttarget for all the modalities
as:

(µm
ttarget , σ

m
ttarget ) = Qm((R, ttarget ) | φm)m ∈ M (4)

where Qm is a deep decoder network with weights φm that
produces a distribution that consists of a mean µm

ttarget and vari-
ance σm

ttarget for the modality m. Fig. 2.(IV) shows the decoders,
Q image and Q joint , and predicted distributions, (µimage

ttarget , σ
image
ttarget ) and

(µjoint
ttarget , σ

joint
ttarget ), for two domains. The learning objective of our

framework is to construct better distributions according to the
given observations as in Garnelo et al. (2018) and Seker et al.
(2019), so the loss term is defined as:

L = −

M∑
m

logP(Smttarget | µm
ttarget , σ

m
ttarget ) (5)

where Smttarget ∈ SMttarget is the target sensorimotor value for modality
m at time ttarget .

After training, the system can be requested to make predic-
tions for all the modalities and for all the time steps by fixing
pM = 1/M and assigning OM as novel observations. By observing
the sensorimotor state at any time step, any other time point
before and after can be queried and predicted using our frame-
work. According to the situation, if a sensorimotor modality does
not seem to provide reliable signals, the weight given to that
modality can be decreased by configuring availability vector w.
Note that, the system can even predict missing modalities if the
corresponding wm is set to zero because of a lack of the modality.
Our framework can use the shared latent space for multi-modal
predictions. This also enables our framework to imitate other
agents by observing their actions with, for example, vision and
sound, and producing the agent own behavior by predicting the
corresponding motor signals.

4. Experiment setup

To demonstrate the capabilities of our system, we designed
an experiment where the actions of the robot can be predicted
from the visual and proprioceptual observations at the beginning
of the movement execution. A simulated environment was built
using CoppeliaSim (Rohmer, Singh, & Freese, 2013). The setup
26
consisted of a UR5 robot equipped with a three-finger gripper,
a vision sensor, and an object on a table to be manipulated by
the robot (Fig. 3 left). The action repertoire of the robot was
composed of parameterized push and grasp actions that allow
reaching to the object from all directions, and the data collection
protocol for each action execution (interaction) was as follows. At
the beginning of each interaction, the robot initialized its wide-
open hand at an initial position, and an object appeared in the
middle of the table (Fig. 3 right). If the selected action was push,
a random pushing angle was sampled and the robot pushed the
object from this angle to a predetermined fixed distance of 30 cm
while keeping the hand open. If the selected action was grasp,
a random grasping angle was sampled and the robot started to
close its hand while approaching to the object so as to grasp it and
lift it to a fixed height over the table (30 cm). The collected data
consisted of two modalities that are proprioception and vision. The
proprioceptive signals were composed of seven joint angles of
the robot (6 joints of the UR5 robot and 1 hand opening joint),
whereas the visual signals were 128 x 128 x 3 RGB images. Visual
signals were collected via the vision sensor that was placed to the
point of view of the robot (see Fig. 3). In the end, 50 successful
push and grasp interactions (100 in total) were collected using
the simulator. The interactions were separated into train and test
sets with 80% and 20% ratios respectively.

5. Experimental results

We conducted a set of experiments to test the capabilities
of DMBN from different aspects. First, in Section 5.1, we ver-
ify the prediction capabilities of DMBN by generating complete
image and joint trajectories conditioned only on single images.
In Section 5.2, the performance of DMBN is compared with
MVAE and multi-step errors made by these models are analyzed
in Section 5.3. In Section 5.4, we show how the latent space of
two modalities indeed blends with each other. In Section 5.5,
we analyze the behavior of our model when conditioned with
images from different perspectives and whether it can serve as a
mirror neuron system in replicating observations from different
agents. We analyze whether such generalization is due to the
inductive bias of the model with two different ablation studies in
Sections 5.6 and 5.7, together which lend support to the idea that
mirror neuron formation can be mediated by self-observation and
modality blending with DMBN. Lastly, we test the generalization
of the model by conditioning on out-of-distribution samples and
include the results in Appendices A and B.

5.1. Long-term Prediction with Vision only

In this experiment, we verify whether our system can produce
visual sequences and the corresponding joint values given a single
image as input. Note that since we take the average of latent
vectors for conditioned points, we might as well give multiple
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Fig. 4. (I) Images that are used as observations. (II) DMBN visual predictions for the given time steps. (III) Ground truth images for the given time steps. (IV)
DMBN 7D joint predictions for the whole action.
Fig. 5. The prediction errors on the test set for different modality input–output pairs with the increasing size of the training data (x-axis).
images, instead of a single one, to get a more accurate prediction
(see Eq. (2)). Here, to demonstrate the capabilities of our system
even in such a scenario where the information is minimum, the
system is fed with a single visual observation which is obtained
just before the robot interacts with the object. The availability
vector is set to one for visual modality and to zero for pro-
prioceptive modality since the observation includes only visual
information. Then, the system is requested to produce visual and
motor signals from the beginning to the end of the movement.

Fig. 4 shows two examples of pushing and grasping actions at
the left and the right of the figure respectively. Fig. 4.(I) shows
the obtained images that are used as observations from the test
set. Fig. 4.(II–III) shows the predicted images together with the
ground truth at the corresponding time steps. It can be seen
that by exploiting the position, orientation, and hand state of
the robot extracted from the observed image, our system could
successfully predict the sequences of visual and proprioceptive
signals from start to finish, which are highly accurate compared
to the ground truth values. It is notable that even though there
was no proprioceptive observation in these two examples, our
model could make accurate joint predictions from start to the
end of the movement by just having access to visual modality
(see Fig. 4.(IV)). These results indicate that our model can use
the representation encoded from an available modality to predict
the signals of the other missing modalities. A more detailed
quantitative analysis of cross-modality predictions is presented
in the next section.

5.2. Missing Modality Prediction as a Function of Training Set Size

In this section, we test whether DMBN can indeed perform
well when there are some missing modalities. In this experiment,
we used the same network in the previous experiment which is
trained by using either visual or proprioceptivemodalities. During
the test phase, we set the availability of one of the two modalities
to zero. We tested whether our system can still predict missing
modalities.

We compared our method with MVAE (Zambelli et al., 2020)
as it can handle missing modalities. Moreover, we made several
modifications to the original MVAE architecture to make a fair
 V

27
comparison. First, we added convolutional layers for the visual
input pipeline. All layers in the encoder and the decoder are
exactly the same as in DMBN. Therefore, the number of parame-
ters is the same except that MVAE uses an extra fully-connected
layer to combine different encoder outputs. This extra layer is
not needed in DMBN since the latent representation is shared
and acquired via normalized weighted summation. Second, we
remove the standard deviation prediction from the decoder as it
gave better results in our preliminary experiments. We did not
use the KL divergence term in the loss as in Zambelli et al. (2020).
Third, we randomly mask the sensorimotor data at time t and
predict the data at t + 1, in addition to other masking schemes
reported in Zambelli et al. (2020). This additional masking scheme
enables us to make full trajectory predictions (both forward and
backward prediction) given the observation before contact. Our
implementation2 is based on Zambelli et al. (2020) and their code
repository.3

We report our results in Fig. 5 where the prediction accuracies
with increasing number of training trajectories are shown. For
the two modalities in our experimental setup, we tested four
different combinations of modality masking: predicting visual
states when either proprioceptive modality (Fig. 5.a) or the visual
modality (Fig. 5.c) is missing, and predicting joint states when
either proprioceptive modality (Fig. 5.b) or the visual modality
(Fig. 5.d) is missing. We condition both DMBN and MVAE models
with the observations taken from the same time step that is right
before the robot interacts with the object. Both systems predict
complete visual and joint trajectories starting from t = 0 to
t = T . Since DMBN is able to learn from few data, the error and
its variation drop quickly even with the small training size, and it
improves the accuracy while the data size is increased. For MVAE,
the error slightly drops during the data size increase, yet, still far
from DMBN. One reason for the error of MVAE is that it feeds the
predictions back to itself as input, thus cascades the error in the
long horizon. We investigate this phenomenon in the next section
in detail.

2 https://github.com/alper111/multimodal-vae
3 https://github.com/ImperialCollegeLondon/Zambelli2019_RAS_multimodal_
AE

https://github.com/alper111/multimodal-vae
https://github.com/ImperialCollegeLondon/Zambelli2019_RAS_multimodal_VAE
https://github.com/ImperialCollegeLondon/Zambelli2019_RAS_multimodal_VAE
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Fig. 6. Multi-step prediction results. MVAE errors increase with the prediction steps due to error accumulation. However, our model preserves the error at the same
level for increasing prediction steps since it predicts every time step independent from each other.
Fig. 7. t-SNE visualization of latent space during training. Blue points are visual encodings, and red points are joint encodings.
.3. Analysis of long horizon predictions

In this section, we compared the capacity of DMBN on the
ong horizon predictions with the MVAE method. Both models are
rained using the same two modalities in the same way as in the
revious section.
In Zambelli et al. (2020), MVAE is used for one step ahead

redictions to control the iCub humanoid robot in a closed loop.
o make predictions about further time steps, the model can be
ed with its output from the previous time step. They showed
hat when trained with sinusoidal data, the prediction accuracy
emains the same for about 50 time steps, and then starts to
egrade. In this experiment, we compared the two methods us-
ng the data that is collected during the self-exploration which
s more complex and high-dimensional. In contrast to MVAE,
MBN does not need to feed its output back to itself as input to
ake further predictions since we can explicitly query any time
tep independently and make predictions on the long horizon
irectly.
We analyze the error versus the prediction step for two meth-

ds in Fig. 6. The error of MVAE increases as the prediction step
ncreases since the error is fed back in the input for future time
tep predictions. However, the error of DMBN remains around
he same because the model does not have a feedback loop to
onnect an erroneously computed output to its input, and make
redictions for every time step independently just by looking to
he observations.

.4. Multimodal latent space visualization

In this experiment, multi-modal latent space is visualized and
nalyzed. As mentioned in the previous section, we trained4 the
ystem with the two modalities that are visual and proprioceptive.
or visualization purposes, the high-dimensional representation
pace (128 sized vector) is reduced to two dimensions using
-SNE (van der Maaten & Hinton, 2008) method at different
tages of the training. Fig. 7 shows the t-SNE visualization of the
ultimodal latent space at 0, 7k, 25k, 75k, and 150k learning
teps from left to right. Blue and red points indicate the samples
rom the visual and proprioceptive modalities, respectively. Fig. 7
hows that although the different modalities are clustered and
eparated from each other at the beginning of the training (0
nd 7k learning steps), they start to share the representations

4 Training details about the network can be found in Appendix C.
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between each other after a while (25k learning steps), and turn
into matching/overlapping representations in the later stages of
the training (75k and 150k learning steps). Paired blue and red
points in the overlapping representation space are analyzed and
it is found that each paired blue–red point corresponds to two
modalities recorded from the same state of the environment.
These results suggest that our system can effectively learn mul-
tiple modalities in a common latent space in a way that every
sensorimotor modality recorded from the same state of the en-
vironment ends up turning into the nearly same representation
in the latent space. This allows our system to predict the miss-
ing modalities by using the representations produced by other
available modalities, which was shown in Section 5.2.

5.5. Imagining own actions by observing others: Emergence of mir-
ror neuron system behavior

In this experiment, we tested our system to see if it can
generate its own sensorimotor data by observing another agent
perform an action. In order to do that, an agent was placed on
the different sides of the table and their performed actions are ob-
served via our agent’s visual sensor. Note that in the training data,
interactions were only performed and recorded just by our agent,
so observing other agents in the test time is a novel information
that is completely outside of our training set. Since we were using
only visual data as the observation, the availability vector is set to
one for visual modality and to zero for proprioceptive modality.
Because the observations are on another agent but the predictions
are made for our agent, this prediction process can be considered
as forming a visual representation of the action of another agent
for the self.

Fig. 8 shows the prediction results of our model in two differ-
ent pushing and grasping scenarios where the observations are
shown in Fig. 8(a). In the first scenario, the other agent was placed
on the opposite side of the table, and in the second scenario, the
other agent was placed on the left side of the table. Fig. 8(b)
shows the visual signals during the other agent performed its
action, and Fig. 8(c) shows the full trajectory prediction of our
system as it imagines the visual signals for itself. As it can be seen
in the predictions, our agent is able to generate visual trajectories
from its own perspective that matches the approaching angle and
the action type in the observation, hence, imagining an action that
would be an effect-based imitation of the observed action.

However, when we further analyzed our model, we saw that
DMBN behaves differently in some specific scenarios. Surpris-

ingly, when the other agent pulls the object towards itself, our
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a

Fig. 8. Examples of DMBN effect imitation behavior. First row: Observing the other agent just before it pushes away the object. Second row: Observing the other
gent just before it grasps the object.
Fig. 9. Examples of DMBN egocentric imitation behavior. First row: Emergence of mirror neuron behavior where the agent observes the other agent pull the object
towards itself. Second row: The agent observes a hand without the body. Third row: The agent observes a hand and a base without the arm.
agent imagines an action that egocentrically imitates the ob-
served action (Fig. 9, first row) and generates motor signals that
would also pull the object towards itself rather than creating the
effect on the object as shown in Fig. 8. We can say that, in this
particular action observation case, an emergent mirror neuron
property was exhibited by our DMBN. Interestingly this behavior
‘switches’ so that the action imagined corresponds to effect-based
imitation (i.e. emulation) of the observed action when the body
of the robot is removed from the interaction (Fig. 9, second row).
Finally, when the robot is partially revealed by disclosing the base
of the robot, the system starts to understand the observed action
again as bringing the object toward one’s self (Fig. 9, third row),
thereby showing a mirror neuron response as in the first row of
Fig. 9.

These results show that when conditioned with the visual sig-
nals of other agents, DMBN has the potential to produce output
signals similar to that of a mirror neuron system. However, sig-
nals generated can correspond to either effect-based or egocentric
imitation depending on the specific visual signals available from
the other agent and the environment. Therefore, it is viable to
modulate the behavior of DMBNs via other cognitive mechanisms,
e.g. attention, to purposefully control the operation of the model.
29
5.6. Template matching according to pixel and latent space distances

In this experiment, we aimed to see whether the mirror neu-
ron emergence in our system was due to the rich representations
constructed in the latent space during the learning, or it could
be simply explained by a straightforward image-based template
matching. For this, first, two test cases in which true mirror
response (i.e. action representation that would yield egocentric
imitation) was observed were selected. Fig. 10.(a) shows these
two observation cases where the agents are placed on the op-
posite and the left side of the table, respectively. For each test
case, the closest image in the training set that gives the min-
imum average pixel error, and the corresponding image of the
closest representation that gives the minimum MSE error in the
representation latent space are found and compared. Fig. 10.(b)
shows the corresponding closest pixel and representation images
for each case respectively. The closest pixel image is found by
comparing the observed image with all of the images in the
training dataset and selecting the image that gives the minimum
pixelwise MSE error, where the closest representation is found
by comparing the encoding of the observed image with all of the
encodings in the training dataset and selecting the image that
gives the minimum MSE encoding error. Fig. 10.(c) also shows
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Fig. 10. Closest Pixel: Pixel Space Distance; Closes Representation: Latent Space Distance.
able 1
est results of the two models in ten different training sessions with two action
bservation cases (see Fig. 10) of demonstrating agent positioned across (Case
) and the left side of the agent (Case 2) . Success: The model produced a
ignal output that corresponds to true mirror response; i.e. the execution of the
ction based on those signals would yield egocentric imitation. Fail: the model
roduced disturbed image signals.
True Mirror Response Success Fail

Image + Joint Model Case 1 10 0
Case 2 10 0

Only Image Model Case 1 6 4
Case 2 4 6

the corresponding full trajectory interactions of the found results
from the training set.

Results of the both examples show that the corresponding
nteractions of the closest pixel images do not exhibit true mirror
esponse (i.e. the predicted signals would not yield an egocentric
mitation when executed on the robot). On the other hand, the
orresponding interactions of the closest latent space represen-
ations show true mirror response. These results suggest that
he output signals that DMBN produces are not based on a sim-
le image-based error minimization but on rich representations
hat are learned during the multi-modal training with modality
lending. The contribution of the deep modality blending to the
irror neuron emergence is further inspected in detail in the next
ection.

.7. Analysis of the contribution of multimodal learning to mirror
euron emergence

In this experiment, we tested if deep modality blending con-
ributes to the mirror neuron emergence in our system. To do
hat, a model that only uses visual modality was trained next to
ur model which was trained by using both visual and proprio-
eptive modalities. In order to prevent the training biases that
an occur because of the initial network weights or sampling
eeds, both models were trained 10 times with different random
nitializations. After the training, both of the models were tested
ith two test cases and checked whether the networks produce
30
output signals that correspond to mirror neuron emergence. The
two test cases used in this experiment were the same examples
as in the Experiment 5.6 where the demonstrating agents were
placed at the opposite and the left side of the table (see Fig. 10).

Table 1 shows the results of the two models in ten differ-
ent training initializations with two test cases. Results indicate
that the model that uses deep modality blending (the model
with Image + Joint) produces coherent images that correspond
to egocentric imitation in every test case where the model that
uses only one modality (Only Image Model) produces disturbed
images on the ten test cases out of twenty. Fig. 11 shows some
example fail cases for the only image model where the image is
disturbed or the arm of the robot is disappeared. These results
suggest that using deep modality blending with visual and propri-
oceptive modalities contribute to the emergence of mirror neuron
behavior.

6. Conclusion

In this work, we proposed Deep Multi-modal Blending Net-
work (DMBN) as a multi-modal action representation system
that learns the sensorimotor signals corresponding to the actions,
in a robust latent representation allowing temporal cross-modal
predictions with limited information. DMBNs can generate com-
plete signal trajectories in any desired modality even with zero
information on the desired modality by using other available
modalities. The performance of the network surpasses the avail-
able multi-modal learning systems due to long-range one-shot
prediction capability and its novel stochastic modality blending
mechanism.

DMBNs build powerful internal representations that allow
surprisingly dynamic extrapolation properties, making it a strong
contender as a feature-engineering-free Mirror Neuron System
model. To be specific, after learning proprioception and visual sig-
nals based on self action observations, when tested with different
perspective action observations, it successfully generates valid
signals that represent its own actions. Depending on the visual
setting, the network either acts a true mirror system matching an
observed act to its own repertoire in an egocentric way, or acts
as an effect-based action matching system. Thus, the network has
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Fig. 11. Example failing scenarios for the only image model. The images are disturbed and the robot arm is disappearing.
otential to sustain egocentric and effect-based action recogni-
ion and imitation capabilities when envisioned in the cognitive
ystem of an artificial or biological agent.
In this vein, future work should focus on developing biolog-

cally plausible and developmentally realistic end-to-end mirror
euron systems that learn along with sensorimotor skill acqui-
ition. In the current study, we used a fixed action repertoire to
ystematically study the properties of DMBNs; yet in a developing
rtificial or biological cognitive agent, mirror neuron formation
nd action learning should go in parallel creating potentially
on-trivial interactions worth studying. Another direction that
hould be pursued is to use the basic imitation capacity acquired
y the model, to construct novel imitation capacity, where the
arts of an observed novel act can be understood and matched
o the existing action repertoire of the agent with the help of
MBN implementing the developing mirror neuron system. We
elieve that work around these directions will not only stimulate
he computational study of mirror neurons as a full end-to-
nd system but also form a framework for lifelong sensorimotor
earning for social robots. As a final point, investigating our model
ith Spiking Neural Networks (SNNs) is another direction to be
ursued to develop biologically plausible systems. Recent studies
how that state-of-the-art SNNs are real-time efficient (Yang,
ang, deng, Rahimi Azghadi, & Linares-Barranco, 2021b), scal-

ble (Yang et al., 2019), and biologically plausible (Yang et al.,
020) systems that can be used in the applications such as: motor
ontrol with supervised learning (Yang, Wang, Zhang, deng, Pang,
Rahimi Azghadi, 2021c), real-world robotics (Lobov, Mikhaylov,
hamshin, Makarov, & Kazantsev, 2020), and object recognition
ith neurorobotic control (Yang, Gao, Wang, Deng, Lansdell, &
inares-Barranco, 2021a). We believe that improvements towards
his direction, such as converting our network to an SNN (Rueck-
uer, Lungu, Hu, Pfeiffer, & Liu, 2017), not only makes our model
evelopmentally more realistic but also drastically reduces the
ower and memory consumption during the training phase which
s caused by the large scale of layers and parameters in the model.
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Appendix A. Generalization of the system to the novel gripper
configurations

In this experiment, we tested our system with different novel
gripper configurations that have different properties than in the
training set. Fig. A.12 shows the generalization performances
of the three different configurations. The left side of the figure
shows a scenario in which the color of the gripper was changed
to red. The middle and the right side of the figure shows two
sample scenarios where a novel gripper is used to perform push
and grasp actions, respectively. Although there are no samples
with different colors or different types of grippers in the training
set, our system could successfully predict the correct actions in all
scenarios. It can be seen that in the results the gripper is predicted
as in its own configuration in the training set even the test
configurations of the gripper are different. These results suggest
that when encountered with novel configurations, our system
could transfer the knowledge extracted from these configurations
to make predictions for its own form that it was trained for.

Appendix B. Generalization of the system to the novel envi-
ronmental configurations

In this experiment, we tested our system with different novel
environmental configurations that have different properties than
the training set. Fig. B.13 shows the generalization performances
of the two different configurations. Left side of the figure shows
a scenario in which the color of the object was different from
the object in the training data, and the right side shows a con-
figuration where the size of the object was changed. Despite not
seeing a big or blue object in the training, our system could
successfully predict the correct approaching angle and the action
using the observed image in both configurations. It can be seen
that the color and the size of the objects are predicted as in
the configuration in the training images. This is expected since
the only configuration for the object in the training scene was
yellow and small. Even though the object in the observed image
was not the same with the training object, our system could use
the knowledge that is learned in the training data to predict a
correct output in its own configurations that satisfies the given
observation.

Appendix C. Network architecture and training details of DMBN

In this section, the network architecture and training con-
figurations of DMBN are shown. Tables C.2 and C.3 show the
image and joint encoder architectures respectively. Tables C.4 and
C.5 show the image and joint decoder architectures respectively.
DMBN is trained with Adam optimizer (Kingma & Ba, 2014) for
one million iterations with a batch size of one and a learning rate
of 0.0001. We set obs to 5.
max
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Fig. A.12. Generalization performance of the proposed system in three different configurations. Left: The color of the gripper is red. Middle: The robot is performing
a push action with a novel gripper. Right: The robot is performing a grasp action with a novel gripper.
Fig. B.13. Generalization performance of the proposed system in two different configurations. Left side: the color of the object is blue. Right side: the size of the
bject is bigger than the original one.
able C.2
MBN Image Encoder.
Layer Input size Output size

Conv3 × 3 + ReLU + MaxPool2 × 2 (4, 128, 128) (32, 64, 64)
Conv3 × 3 + ReLU + MaxPool2 × 2 (32, 64, 64) (64, 32, 32)
Conv3 × 3 + ReLU + MaxPool2 × 2 (64, 32, 32) (64, 16, 16)
Conv3 × 3 + ReLU + MaxPool2 × 2 (64, 16, 16) (128, 8, 8)
Conv3 × 3 + ReLU + MaxPool2 × 2 (128, 8, 8) (128, 4, 4)
Conv3 × 3 + ReLU + MaxPool2 × 2 (128, 4, 4) (256, 2, 2)
Flatten (256,2,2) 1024
Dense 1024 128
Multiply (Image Coefficient) 128 * 128 128

Table C.3
DMBN Joint Encoder.
Layer Input size Output size

Dense + ReLU 8 32
Dense + ReLU 32 64
Dense + ReLU 64 64
Dense + ReLU 64 128
Dense + ReLU 128 128
Dense + ReLU 128 256
Dense + ReLU 256 128
Multiply (Joint Coefficient) 128 * 128 128

Table C.4
DMBN Image Decoder.
Layer Input size Output size

Add (Image + Joint Representations) 128 + 128 128
Concatenate (Target Layer) 128 129
Dense + ReLU 129 1024
Reshape 1024 (256, 2, 2)
Conv3 × 3 + ReLU + UpSample2 × 2 (256, 2, 2) (256, 4, 4)
Conv3 × 3 + ReLU + UpSample2 × 2 (256, 4, 4) (128, 8, 8)
Conv3 × 3 + ReLU + UpSample2 × 2 (128, 8, 8) (128, 16, 16)
Conv3 × 3 + ReLU + UpSample2 × 2 (128, 16, 16) (64, 32, 32)
Conv3 × 3 + ReLU + UpSample2 × 2 (64, 32, 32) (64, 64, 64)
Conv3 × 3 + ReLU + UpSample2 × 2 (64, 64, 64) (32, 128, 128)
Conv3 × 3 + ReLU (32, 128, 128) (16, 128, 128)
Conv3 × 3 + ReLU (16, 128, 128) (8, 128, 128)
Conv3 × 3 + Sigmoid (8, 128, 128) (3, 128, 128)

Appendix D. Network architecture and training details of MVAE

In this section, the network architecture and training con-
igurations of MVAE are shown. Tables D.6 and D.7 show the
mage and the joint encoder architectures respectively. Table D.8
32
Table C.5
DMBN Joint Decoder.
Layer Input size Output size

Add (Image + Joint Representations) 128 + 128 128
Concatenate (Target Layer) 128 129
Dense + ReLU 129 1024
Dense + ReLU 1024 512
Dense + ReLU 512 216
Dense + ReLU 216 128
Dense + ReLU 128 32
Dense 32 14

Table D.6
MVAE Image encoder.
Layer Input size Output size

Conv3 × 3 + ReLU + MaxPool2 × 2 (6, 128, 128) (32, 64, 64)
Conv3 × 3 + ReLU + MaxPool2 × 2 (32, 64, 64) (64, 32, 32)
Conv3 × 3 + ReLU + MaxPool2 × 2 (64, 32, 32) (64, 16, 16)
Conv3 × 3 + ReLU + MaxPool2 × 2 (64, 16, 16) (128, 8, 8)
Conv3 × 3 + ReLU + MaxPool2 × 2 (128, 8, 8) (128, 4, 4)
Conv3 × 3 + ReLU + MaxPool2 × 2 (128, 4, 4) (256, 2, 2)
Flatten (256, 2, 2) 1024
Dense + ReLU 1024 128

Table D.7
MVAE Joint encoder.
Layer Input units Output units

Dense+ReLU 14 32
Dense+ReLU 32 64
Dense+ReLU 64 64
Dense+ReLU 64 128
Dense+ReLU 128 128
Dense+ReLU 128 256
Dense+ReLU 256 128

Table D.8
MVAE shared encoder–decoder. The activation after the first decoder layer is
sliced into two, and each slice is given to a different decoder.
Layer Input units Output units

Encoder

Concatenate (Image+Joint) 128, 128 256
Dense + Tanh 256 128 mean, 128 std

Decoder

Dense+ReLU 128 256
Slice (for image and joint dec.) 256 128, 128



M.Y. Seker, A. Ahmetoglu, Y. Nagai et al. Neural Networks 146 (2022) 22–35

T
M
t
f

i

able D.9
VAE Image Decoder. The last activation is sliced into two (6, 128, 128) shaped

ensors for mean and std. See the original implementation (Zambelli et al., 2020)
or further details.
Layer Input size Output size

Dense + ReLU 128 1024
Reshape 1024 (256, 2, 2)
Conv3 × 3 + ReLU + UpSample2 × 2 (256, 2, 2) (256, 4, 4)
Conv3 × 3 + ReLU + UpSample2 × 2 (256, 4, 4) (128, 8, 8)
Conv3 × 3 + ReLU + UpSample2 × 2 (128, 8, 8) (128, 16, 16)
Conv3 × 3 + ReLU + UpSample2 × 2 (128, 16, 16) (64, 32, 32)
Conv3 × 3 + ReLU + UpSample2 × 2 (64, 32, 32) (64, 64, 64)
Conv3 × 3 + ReLU + UpSample2 × 2 (64, 64, 64) (32, 128, 128)
Conv3 × 3 + ReLU (32, 128, 128) (16, 128, 128)
Conv3 × 3 + ReLU (16, 128, 128) (12, 128, 128)
Conv3 × 3 (12, 128, 128) (12, 128, 128)

shows the shared encoder–decoder architecture. Tables D.9 and
D.10 show the image and joint decoder architectures respectively.
MVAE is trained with Adam optimizer (Kingma & Ba, 2014) for
200 epochs with a batch size of 128 and a learning rate of
0.001.
33
Table D.10
MVAE Joint Decoder. The last activation is sliced into two for mean and std.
Layer Input units Output units

Dense+ReLU 128 256
Dense+ReLU 256 128
Dense+ReLU 128 128
Dense+ReLU 128 64
Dense+ReLU 64 64
Dense+ReLU 64 32
Dense 32 28

Appendix E. t-SNE visualization of the latent space

In this section, the detailed version of the latent space is
investigated. Fig. E.14 shows the encodings of all of the training
trajectories in the latent space.

Appendix F. Supplementary data

Supplementary material related to this article can be found

online at https://doi.org/10.1016/j.neunet.2021.11.004.
Fig. E.14. t-SNE (van der Maaten & Hinton, 2008) visualization of the encoder output. Here, green and red represent ‘move’ and ‘grasp’ actions, respectively. The
nitial and the final point of a trajectory is represented with a triangle and a star, respectively.

https://doi.org/10.1016/j.neunet.2021.11.004
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