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Abstract— Exploration and self-observation are key mecha-
nisms of infant sensorimotor development. These processes are
further guided by parental scaffolding to accelerate skill and
knowledge acquisition. In developmental robotics, this approach
has been adopted often by having a human acting as the source of
scaffolding. In this study, we investigate whether Large Language
Models (LLMs) can act as a scaffolding agent for a robotic
system that aims to learn to predict the effects of its actions.
To this end, an object manipulation setup is considered where
one object can be picked and placed on top of or in the
vicinity of another object. The adopted LLM is asked to guide
the action selection process through algorithmically generated
state descriptions and action selection alternatives in natural
language. The simulation experiments that include cubes in this
setup show that LLM-guided (GPT3.5-guided) learning yields
significantly faster discovery of novel structures compared to
random exploration. However, we observed that GPT3.5 fails to
effectively guide the robot in generating structures with different
affordances such as cubes and spheres. Overall, we conclude
that even without fine-tuning, LLMs may serve as a moderate
scaffolding agent for improving robot learning, however, they still
lack affordance understanding which limits the applicability of
the current LLMs in robotic scaffolding tasks.

I. INTRODUCTION

In robotics, random exploration is a common mechanism
used in learning from reinforcement signals [1], [2], navigation
[3], and manipulation and planning [4]. However, in complex
environments where action-to-effect mapping is non-linear,
stochastic, and/or redundant, hard-to-reach states may not be
experienced [5]. For example, in our previous work on effect
prediction and planning, as the number of objects increases
and the action set is extended, creating composite structures
such as bridges, T-shaped and U-shaped structures becomes
possible [4]. However, constructing such complex structures
requires performing a series of correct actions, which becomes
less and less likely to experience with random exploration as
the complexity of the setup increases.

One approach regarding exploring complex environments is
extracting the required knowledge from humans with methods
like imitation [6], [7] and parental scaffolding [8], [9]. While
data collection from humans can be assumed as the gold
standard for imitation learning and parental scaffolding, it may
become a labor-intensive process for complex learning tasks.

With the introduction of large language models (LLMs),
it became possible to generate human-like natural text and
code-like structured text for various tasks [10]–[12]. This
recent success is fueled by the internet-scale datasets [13],
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[14] together with efficient deep learning architectures such
as Transformers [15] that can squeeze out information from
a vast amount of data. Although LLMs can be considered
as a huge smart look-up table (see [16] for a critique), their
applications in various fields[17]–[19] has shown that they can
be successfully applied to many practical tasks.

The sequence generation capabilities of LLMs are shown to
be useful for robotic applications as well[20], [21]. Addition-
ally, being trained on internet-scale data, they can be utilized
as knowledge bases [22], [23]. By utilizing these two features,
previous works [24] [18] provide methods to utilize PALM [11]
as a robotic controller. Similarly, [22] and [25] utilized CLIP
[12] as a knowledge base for zero-shot learning. However,
grounded knowledge is scarce on the internet, therefore, LLMs
lack real world experience [18], [24]. This poses a problem in
LLM-based robot applications since inferences with incorrect
grounding are usually unusable in real-life scenarios. Huang
et al. [26] demonstrate LLMs shortcomings in executable plan
generation.

Conditioning the LLMs for the agent’s embodiment is re-
quired to perform grounded inferences in robotic settings[27].
Previous work suggests different strategies to perform descrip-
tive embodiment alignment such as bottom-up skill learning
[20], [28], prompt engineering [29], [30], and the use of
multiple modalities [18], [23], [31]. Additionally, the response
selection [24], [32] can be used to eliminate non-aligned
responses and finetuning can increase grounded reasoning ac-
curacy[33]. Another method for utilizing the LLMs’ knowledge
about the real world is LLM scaffolded exploration [31], [34],
[35]. As LLMs provide a large knowledge base about the
real world, they can possibly lead the exploration process in
developmental/continual learning settings. Additional networks
can be trained with sensorimotor data collected from complex
exploration sessions with the help of LLMs. These networks are
expected to make grounded inferences since they are trained
using grounded knowledge while being exposed to hard-to-
reach states. Works [35] and [31] explore such processes where
the data collection was controlled by GPT3 [13] or GPT4 [10].
The collected data was used to fine-tune smaller multi-modal
LLMs. Similarly, [34] proposed a method that uses different
LLMs to guide exploration during reinforcement learning while
[36] utilizes LLMs to augment robot-language data.

In this work, we demonstrate that an LLM (GPT3.5) can
be used as a parental scaffolding agent for a simulated robot
that tries to discover the effects of its actions. Additionally,
we devise a new token-efficient prompting strategy to allow
the LLM to lead the exploration process without descriptive
embodiment alignment. For requesting guidance for robot



exploration, GPT3.5 is prompted to select an action that would
result in an ‘interesting’ or ‘novel’ outcome and to produce
the output in a fixed format that can be easily parsed. We
tested our scaffolding agent against a random exploration
baseline in tabletop environments with different complexities
and observed that GPT3.5 can actively lead the exploration
to hard-to-reach states. Additionally, we showed the effects of
different prompt structures and tested GPT3.5’s capability of
making grounded inferences when different types of objects
with different affordances [37], [38] are introduced.

II. METHOD

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Fig. 1: Action execution steps are shown in the subfigures.
Grids around objects indicate possible grasp and placement
locations. In our experiments, only the center location is used
for grasping. As for placement locations, the next, front, and
center locations are used. Prior to the execution of this action,
the sphere is placed in front of the purple cube, and the dark
green cube is placed next to the purple cube.

Inspired by skill acquisition via parental scaffolding during
infant development, we propose a robotic scaffolding method
that regards LLM as a scaffolding agent akin to a caregiver that
guides the learning exploration of a robotic agent. Note that
infant scaffolding may take the form of kinesthetic guidance,
attention directing, or choosing the right choice for the infant
for a given task. In this work, we focus on the latter type
of scaffolding and propose a method to exploit the high-
level knowledge contained in LLMs to provide automated
scaffolding to accelerate learning.

Even though foundation models can not be used to perform
accurate grounded inferences directly [18], [24], [26], we
hold that the knowledge harvested from the internet may
allow LLMs to scaffold robot exploration. As such, unlike
other applications of LLMs, we do not apply fine-tuning. For
example, in the case of a tabletop manipulation environment,
the ChatGPT recognizes balancing a cube on top of a sphere
as a challenging task in its foundation model form. Thus, our

expectation is that GPT3.5 can distinguish among alternative
action choices and make suggestions for better exploration
without further conditioning on the real world.

As for the knowledge extraction method, the LLM is ex-
pected to steer the exploration towards rare but desired task
configurations by selecting actions that have more exploration
potential. The collected sensorimotor data thus is expected
to contain hard-to-reach states that are important for learning
action-to-effect mapping to allow real world reasoning. Finally,
the result of the learning with the collected data is expected to
create a system that can make grounded inferences.

To show the validity of LLM-based scaffolding, a simulated
robot is equipped with an action repertoire in a tabletop object
manipulation environment where it experiments with its action
capabilities and collects data for learning the effects of its
actions. In this environment, hard-to-reach task configurations
are complex structures that can be built from basic objects such
as cubes and spheres. In this setup, experiences are collected in
several environment configurations using different exploration
policies including a random baseline to assess the efficiency of
the proposed method. The visitation frequency to hard-to-reach
states such as tall towers is used as a measure of exploration
efficacy gained by LLM-based scaffolding.

A. Experiment Environment

A simulated robot, UR10 (Universal Robots), and a tabletop
environment are used to capture the behavior of an infant
exploring its environment. The tabletop environment serves as
a confined setup where the task complexity can be tuned by
changing the number of available actions and objects. The robot
is equipped with high-level pick-and-place actions to interact
with the objects on the table. The robot and its interactions with
the environment are simulated with the PyBullet simulation
library. The robot interacts with the objects in ‘sessions’ which
consists of 10 interactions. Each session begins with various
numbers of cubes and spheres randomly initialized on the table.
The cubes have an edge size of 2.5 cm while the spheres have
a diameter of 2.5 cm. Then, ten pick-and-place actions are
executed within each session. At each interaction step, the robot
selects a source and a target object to interact with and executes
a pick-and-place operation by first grasping the source object
and then placing it on top of or next to the target object.

In brief, the actions available to the robot are characterized
by 3 integer tuples: (os,ot , p) s.t. os ̸= ot where os indicates
the grasped object id, ot indicates the target object id and p
indicates the discrete relative positions. Three possible relative
locations are allowed for the placement operation: the top
(p = 0), next (p = 1), and front (p = 2) positions. The top
position corresponds to direct stacking operation whereas the
next and front positions correspond to a displacement of 15 cm
in the positive y and x directions. The actions of the robot are
generated by first computing desired joint angles corresponding
to desired robot locations by the inverse kinematics solver of
PyBullet, and then running a joint tracking loop. An example
execution is illustrated in Figure 1.



B. LLM Interfacing for Scaffolding

Scaffolding for robot action exploration is tested in sessions
of 10 object interactions where the simulated robot receives ac-
tion suggestions from the LLM. To this end, the current object
configuration is described to the LLM in natural language using
algorithmically generated prompts. Similarly possible action
choices are algorithmically generated for LLM to choose from.

1) GPT System Prompt Definition: As our system is
designed for the GPT3.5, system prompts are available to us
in addition to the user prompts. A system prompt is a special
type of prompt that is used for conditioning GPT3.5 to follow
a specific behavior described in a natural language during the
conversation [39]. Therefore, we used the system prompt to
provide the task definition and the output format to GPT3.5.
In order not to introduce any bias towards a specific selection,
the task definition simply consists of selecting an action with
an interesting outcome in the given environment configuration.
This short definition results in GPT3.5s’ selecting actions by
referring to the information it is trained on. As for the output
definition, the GPT3.5 is conditioned to provide the reasoning
behind its selection before making a decision. Generating the
reasoning before the decision results in less biased reasoning
and increases the success rate of the GPT in robotics
tasks [20] as the generated tokens are conditioned on the
previous tokens. The complete system prompt is the following:

[System]: There are some objects on the table. Which ma-
nipulation alternative on them yields an interesting outcome?
Choose one and explain.
Your output should be in the following format:
<reasoning> some sentences </reasoning>
Selected action is : <number of the selected action>

2) GPT User Prompt Definition: The user prompt is
conventionally used to query an answer from the GPT. In
this study, we used it to inform GPT about the environment
configuration. To do so, our system generates a prompt as
follows: < Si >< H1,...,i−1 >< A1,...,k >, where i indicates
the number of previously selected interactions, Si is the
description of the current configuration, H1,...,i−1 is the session
history, and A1,...,k are possible actions to execute, all given in
natural language. The configuration description contains a list
of objects and the spatial relations between objects. Colors are
used as unique object identifiers while describing the scene.
The session history contains a list of previously executed
actions in an orderly manner. Instead of conducting a dialogue
between GPT3.5 and the robot during the whole interaction
session, a new dialogue is initialized for each configuration,
and session history is summarized in H1,...,i−1. Finally, a list
of possible actions is provided to GPT3.5 to choose from.
By providing a set of actions from the action repertoire, our
system ensures that the selected action will be within the
execution capability of the robot. An example prompt that
describes the configuration given in step 4 of Figure 1 is as
follows:

[User]: There is an orange cube, a green cube, a purple cube, a
brown sphere, and a light green cube in the current scene.
the green cube is next to the purple cube.
the brown sphere is in front of the purple cube.
the light green cube is stacked on the purple cube.
Previously executed actions:
Put the brown sphere in front of the purple cube
Put the green cube next to the purple cube
Put the light green cube on top of the purple cube
. . .
Possible actions:
1 ) Put the green cube in front of the orange cube
2 ) Put the brown sphere next to the light green cube
3 ) Put the orange cube on top of the light green cube
. . .

3) GPT Settings: For all of our experiments
gpt-3.5-turbo is used as the LLM. As for the API
call parameters, the temperature is set to 0 to reduce the
randomness of the answers.

III. EXPERIMENTS AND RESULTS

To assess the effectiveness of our method for scaffolding
the exploration, a purely random action selection strategy is
used as the baseline. If LLM indeed had some insight as to
what actions yield better exploration of the configuration space,
then it would discover complex structures, in particular towers,
significantly faster than with a random exploration strategy.
In addition to this experiment, several other experiments are
conducted to shed light on the scaffolding capability provided
by the LLM.

A. Comparisons with the Baseline Exploration Strategy

For comparing the performance of our system against the
baseline we first consider an environment with four cubes
and two possible relative object locations (Experiment-1): on
top of and next to. Each interaction session consists of ten
interactions with the objects led by either by using LLM
scaffolding or by using the random exploration strategy. The
LLM is asked to pick the action that would lead to the most
interesting configuration at each interaction step. To account
for the stochasticity in initial random object placement and
multiple choice generation, the interaction session is repeated
40 times. Figure 2a shows the results obtained in terms of the
maximum tower height achieved. Evidently, LLM scaffolded
exploration discovers the tallest possible tower much earlier
than the random exploration case.

To further test the generality of this result, in experiment
two, the number of objects is increased to five. Figure 2b
shows the tower height distributions when an additional cube is
introduced (Experiment-2). Also with this setup, LLM scaffold-
ing based action selection obtains higher towers, in a shorter
number of interactions. The random exploration generates the
tallest possible tower in only one of the episodes.

In Experiment-3, the number of placement actions that can
be executed by the robot is increased from two to three (on
top of, next to, and in front of) to demonstrate the effect of
a larger action repertoire. Figure 2c shows the comparison
between LLM scaffolded exploration and random exploration



(a) Experiment 1: 4 cubes, 2 proximity locations

(b) Experiment 2: 5 cubes, 2 proximity locations

(c) Experiment 3: 5 cubes, 3 proximity locations

Fig. 2: Comparison of tower heights between random ex-
ploration and scaffolded exploration in different environment
settings with incremental difficulty. The first setting contains 4
cubes and 2 positions, the second one introduces the fifth cube,
and the last one introduces the third proximity location.

in this configuration. As can be seen, the random exploration
fails to reach a tower of height five. On the other hand,
LLM scaffolding based exploration manages to create a tower
of height of five in eight interaction sessions, indicating a
significant contrast compared to the random exploration case.

As the complexity of the environment increases, the proba-
bility of visiting hard-to-reach states during random exploration
decreases. This is exemplified by the failure of random explo-
ration to achieve the tallest possible tower in the most complex
environment setting (Experiment-3). On the other hand, LLM
scaffolding facilitates the construction of tall towers at the
initial phase of a session. However, this trend does not continue
till the end of the session as can be seen in Figure 2a and

2b. This is due to the action choices suggested by GPT3.5
in response to the query of choosing the action to create an
interesting outcome and tall towers lose their novelty once
encountered.

B. Effects of Different Prompts

Fig. 3: Effects of different adjectives on the tower heights in a
5 cubes 2 positions setting.

Experiments 1-3 probed GPT3.5’s ability to accelerate learn-
ing exploration when requested to select actions to create
‘interesting’ outcomes. To assess the effect of the adjective
‘interesting’, it is replaced with the word ‘novel’ in the system
prompt, and an LLM scaffolding experiment is conducted
with a five-object, two-position configuration (Experiment 4).
Figure 3 shows the average tower height attained for the ‘novel’
adjective case superimposed with the ‘interesting’ adjective
case. Observation shows there is a notable difference in re-
sulting tower heights. When GPT3.5 is conditioned to yield a
‘novel’ outcome, it focuses on the history and actively avoids
actions similar to the previously executed ones. Therefore,
performing the stacking operation four consequent times is
not likely in this setting as it requires performing consequent
stacking operations, resulting in a low visit frequency to states
with complex structures. These results show the importance
of selecting the appropriate words when minimal prompting is
used.

C. Exploiting LLM’s Affordance Knowledge

Cubes are inherently easily graspable and stackable, there-
fore, manipulating them does not require extensive knowledge
regarding affordances. In order to evaluate the GPT’s perfor-
mance when affordance is taken into account, we introduce
a sphere into the environment alongside four cubes when all
spatial positions are allowed. This setup allows us to examine
how GPT3.5 adapts to the inclusion of a new object with dis-
tinct affordances. Similar to previous experiments, 40 sessions
are collected with LLM scaffolded and random exploration
policies.

Figure 4 shows the height distribution of sessions collected
with both policies. Random exploration fails to achieve the
tallest tower, similar to experiment three from section III-A.
On the contrary, LLM-scaffolded exploration manages to find
a direct path to the tallest tower in one of the sessions.



Introducing a sphere into the environment increases envi-
ronmental complexity primarily because stacking cubes on top
of spheres results in the cubes dropping to the table surface,
resulting in a state similar to the initial state. Additionally, the
presence of the sphere necessitates that it always occupies the
topmost position in the tower, adding an additional constraint.
Consequently, the probability of encountering a tall tower di-
minishes significantly during random exploration. In contrast to
the random exploration, the GPT-based approach successfully
produces a tower with a height of five, revealing its ability to
target hard-to-reach states.

Fig. 4: Height distributions of random and scaffolded sessions
given 4 cubes and a sphere with 3 positions,

Fig. 5: Comparison of average heights in LLM scaffolded
sessions from experiments three and five with different sets
of objects.

Even though LLM scaffolding shows improvement over
random sampling, the expectation was for the LLM to perform
similarly to the experiment conducted in the environment
containing five cubes by avoiding states in which the sphere is
placed on an incomplete tower. However, Figure 5 compares
LLM scaffolded sessions from experiments three and five and
shows a decrease in average tower height when the sphere
is introduced. Careful examination of dialogues during data
collection reveals that GPT disregards the fact that the cubes
cannot be stably stacked on the sphere and actively tries to stack
cubes on top of the sphere. Moreover, it hallucinates that a cube
is stacked on top of the sphere by referring to the previously
executed actions section in the query prompt, even though the
environment definition provides no such relation.

D. Forcing GPT to Use Affordance

During the previous experiment, GPT3.5 was conditioned
to select actions based on their perceived interest. It is worth
mentioning that an action leading to the construction of a
tower in the long run may not be considered interesting in
the current configuration. For instance, in an environment with
a tower of three cubes, GPT3.5 may choose to stack one of the
cubes on top of a sphere since this particular action has not
been previously observed in the episode. While this behavior
promotes exploration, it adds to the complexity of reaching
a state with a taller tower. Furthermore, our prompt instructs
GPT3.5 to select a single action, but the creation of a tower
requires multi-step reasoning.

To assess GPT3.5’s understanding of affordances, we
designed an experiment in which the LLM is asked to create
the highest possible tower in environment configurations with
5 objects and 3 spatial positions. GPT3.5 performance in
stacking task is tested in environments consisting of 5 cubes
or 4 cubes and a sphere across 40 interaction sessions. During
these experiments, GPT is provided with the acknowledgment
that future actions will be available. For this purpose, the
system prompt in the following is used while maintaining the
same user prompt structure:

[System]: There are some objects on the table. For building the
highest possible tower with the objects given below, select the most
appropriate manipulation action. Choose one and explain. Your
output should be in the following format:
<reasoning> some sentences </reasoning>
Selected action is : <number of the selected action>

Fig. 6: Comparison of average heights in different environments
during LLM scaffolded sessions with tower creation task.

Figure 6 illustrates the GPT’s performance in these
environments. Being instructed to build tall towers, the
model demonstrates a preference for stacking operations,
while avoiding the deconstruction of towers. As a result,
higher structures are successfully built in most sessions.
However, a significant difference is observed when the sphere
is introduced to the environment. Further analysis reveals a
continuing preference towards placing spheres in the middle
positions, as this action immediately increases the height of
the tower. Additionally, GPT3.5 states the sphere is a stable
base for future placements to provide logical reasoning for
these actions. This behavior shows that the affordances of



the sphere are disregarded. Subsequently, GPT3.5 attempts to
place the remaining cubes on top of the sphere, revealing a
logical flaw in real world inferences. Following is an example
of reasoning generated by the GPT3.5:

[Assistant]: The best action would be to put the blue cube on
top of the red sphere. This is because the red sphere can provide
a stable base for the cube, and the cube can sit securely on top of
the sphere.

IV. DISCUSSION

Compared to random exploration, LLM-scaffolded explo-
ration shows a higher visit frequency to hard-to-reach states,
even in the most complex settings in which random explo-
ration failed to achieve the most complex structure. The clear
difference between tower heights in experiments one to three
and examination of the dialogue during exploration shows
that GPT3.5 is capable of educated scaffolding. Additionally,
the GPT actively avoids previously occurred configurations by
using the session history. This is demonstrated in Experiment
One and Experiment Two. In these experiments, upon creating
tall structures at the beginning of the episode, GPT proceeds to
dismantle them to explore proximity relations as tall towers lose
their novelty, thus, a decrease in average height is observed in
the later stages of the exploration. The following is an example
of reasoning sampled during Experiment 2.
[Assistant]: Reasoning: By putting the blue cube next to the
black cube, we create a new arrangement that adds more variety
to the scene. This action breaks the previous stacking pattern and
introduces a new spatial relationship between the blue and black
cubes.

GPT3.5 can lead the exploration, however, it demonstrates a
behavior change when different affordances, such as spheres,
are introduced. Even though GPT3.5 is not capable of making
grounded inferences with high accuracy [26], our expectation
was to observe a reasonable use of affordance knowledge.
When GPT3.5 is asked “Can you balance a cube on top of
a sphere?”, the generated answer indicates that it may not be
feasible in the real world. However, when we tried to utilize
this understanding in a tower creation task, GPT3.5 was not
able to filter out episodes in which a sphere was used as a
middle block in a tower. To better understand the capabilities
of the GPT3.5, we asked it to generate steps to build a high
tower given only the state description. The resulting steps were
strongly biased toward the order of the objects appearing in the
state description. Therefore, if the sphere was not the first or
the last object appearing, GPT3.5 eagerly placed it in a mid
position of the tower. In contrast, when GPT4 was tested in the
tower creation task, it was capable of placing the sphere to the
top position, regardless of the sphere’s appearance order in the
prompt. Moreover, some trials resulted in GPT4’s discarding
the sphere by stating it would not be stable even in the top
position. These observations indicate a clear difference between
the grounded reasoning capabilities of GPT3.5 and GPT4. This
preliminary experimentation with GPT4 strongly encourages
future work to investigate the exploration scaffolding capability

of more powerful systems such PALM-E [18] and GPT4. Note
that in this study, our goal was to see whether we can benefit
robotic exploration from the harvested knowledge of GPT3.5
without additional effort to increase grounded inference capa-
bilities. Future work may focus on utilizing methods mentioned
in section I alongside scaffolding.

One limitation of our method is providing LLM with a
limited set of actions. The most complex environment con-
figuration in our experiments contains 60 possible actions.
However, there are only a few correct actions during the last
stages of the tower creation task and the other actions may
be neutral or adversarial. In the experiments in section III-D,
observation shows that the action suggestions the LLM received
may be unrelated to the existing tower or the only action related
to the tower may be the premature placement of the sphere in
the worst case. In such cases, GPT3.5 prefers the action that
immediately increases the tower height, thus, places the sphere
in a mid position. Consequently, the LLM hallucinates that the
sphere is a solid foundation for further stacking to validate
its selection. Similarly, in the experiments from section III-
A, the average height achieved by the GPT3.5 decreases as
the environment complexity increases due to the decrease in
the frequency of actions resulting in a tower occurring in the
prompt. One area for future work may be allowing the LLM
to ask for another set of actions instead of forcing a selection.

V. CONCLUSIONS

Large language models provide a valuable knowledge base
for robotics applications. However, LLMs perform poorly while
making grounded inferences due to their lack of real world
experience. Breaching the gap between the high-level reasoning
of the LLM and the low-level embodiment of the agent is
essential for utilizing LLMs for robotic applications. Different
methods [18], [20], [24] are introduced to elicit grounded
reasoning from LLMs. These works show remarkable success
in grounded inferences, however, this success brings along an
immense computation cost. To avoid these costs, LLMs can
be used solely as a light knowledge base. Being inspired by
parental scaffolding observed during infant development, we
developed a method to utilize the LLM as a scaffolding agent.
While doing so, we proposed efficient prompting strategies
to tackle the LLM-embodiment alignment problem. To test
the efficiency of LLM scaffolding, we drew comparisons with
random exploration in different environment settings. Our ex-
periments show the LLM’s capability of actively targeting hard-
to-reach states during exploration, thus, producing a robotic
experience with high information gain. However, when distinct
affordances are introduced to the environment, we observed
an unexpected decrease in performance even though the LLM
scaffolding still performs better than the random exploration.
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