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A. Ahmetoğlu, O. İrsoy, E. Alpaydın Convolutional Soft Decision Trees ICANN 2018 1 / 12



Soft decision trees

Response of a binary decision tree node m:

Fm(x) = Fml(x)gm(x) + Fmr (x)(1− gm(x)) (1)

In a hard decision tree, gm(x) ∈ {0, 1}.
In a soft decision tree, gm(x) ∈ [0, 1], where

gm(x) =
1

1 + e−(wT x)
(2)

Leaves contain constant values, ρm. They can be also parameterized by
adding a linear projector, ρm = V x .
Also known as hierarchical mixtures of experts (Jordan and Jacobs, 1993).
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Because of this we can fit to data smoothly with fewer number of nodes.

Figure 1: Hard (left) and soft (right) tree fits to sinusoidal data. Tree shows the split hierarchy and
vertical bars show the split positions. Blue dots show the data, red curve shows the fit. Dashed
red lines show the leaf response values for soft tree.

In all of the following figures, blue curves denote the response function up to the particular
node of the tree, and red curves denote the sigmoid split function. A higher sigmoid value means
a higher responsibility for the left subtree.

Figure 2: Soft regression tree with linear leaves, fit to the absolute value function.

1

Figure: A hard decision tree (left) and a soft decision tree (right). Reprinted from
İrsoy et al. 2012.
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Convolutional soft decision trees

A more complex gating function results in a more complex model,
therefore brings representational advantage.

We can choose any differentiable g(x).

In this work, we choose g(x) to be a convolutional neural network.
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Regularization of soft decision trees

When the representational power of g(x) increases model becomes
prone to overfitting.

Previously, L2 and L1 regularizations for soft decision trees are
examined and L2 is reported to work slightly better (Yıldız et al.
2013).

We compare L2 regularization with input dropout regularization.
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Fig. 1: Hyperparameter space for the MNIST dataset with a soft decision tree of
depth 3. Contours define the error percentage on the test set. The lowest error
position is marked in both figures.

5 Experiments

We compare mainly three di↵erent architectures with di↵erent parameter size
on 4 di↵erent classification tasks. The first model is a convolutional soft decision
tree, a soft decision tree that is connected to a CNN’s fully-connected layer.
The second model is the same as the first model except that leafs contain linear
projectors instead of constant vectors. In the third model, we instead connect
a multilayer perceptron to a CNN’s fully-connected layer. SDT-k denotes the
first model with a tree depth of k, SDT-kP denotes the second model with a
tree depth of k and MLP-k denotes the third model with k hidden units. In this
notation, SDT-3 and MLP-8 have nearly the same number of parameters.

We have experimented on 4 datasets: MNIST, FashionMNIST, CIFAR-10 and
Imagenet32. MNIST dataset contains handwritten digits by di↵erent writers. A
sample has 28 ⇥ 28 grayscale pixel intensity in the range [0,255] [8]. There are
60000 training and 10000 test samples. FashionMNIST is a recently constructed
MNIST-like dataset [9]. Its format is as the same as MNIST dataset. Fashion-
MNIST contains fashion products. CIFAR-10 contains 60000 32 ⇥ 32 colored
images (RGB intensities) belonging to 10 di↵erent classes [10]. Downsampled
Imagenet is developed as a more di�cult replacement for CIFAR-10 [11]. It con-
tains 1281167 32 ⇥ 32 colored images belonging to 1000 di↵erent classes as the
original Imagenet dataset. There are 50000 validation images. In training, we
made the training/validation split as 55k / 5k for MNIST and FashionMNIST,
45k / 5k for CIFAR-10. For Imagenet32, there is no available test set therefore
we reported the error on validation set.

We consider the classification task of MNIST and FashionMNIST datasets
are easy and the classification task of CIFAR-10 and Imagenet32 datasets are

Figure: Error surfaces with respect to different hyperparameter settings.
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Table 3. Effect of L2 regularization for different α coefficients.

Tree depth α = 1 × 10−4 α = 5 × 10−5 α = 1 × 10−5

MNIST

1 5.00 ± 0.03 5.07 ± 0.17 5.13 ± 0.11

2 4.15 ± 0.30 3.84 ± 0.22 3.74 ± 0.24

3 3.60 ± 0.18 3.52 ± 0.20 3.22 ± 0.17

4 3.55 ± 0.13 3.19 ± 0.15 3.06 ± 0.24

5 3.53 ± 0.19 3.28 ± 0.17 3.03 ± 0.12

Fashion-MNIST

1 13.81 ± 0.12 13.78 ± 0.14 13.79 ± 0.15

2 13.19 ± 0.26 12.92 ± 0.15 12.88 ± 0.13

3 12.74 ± 0.20 12.70 ± 0.24 12.41 ± 0.22

4 12.71 ± 0.16 12.38 ± 0.22 12.07 ± 0.17

5 12.65 ± 0.12 12.48 ± 0.06 11.84 ± 0.12

CIFAR-10

1 60.77 ± 0.28 57.51 ± 0.31 61.13 ± 0.77

2 57.45 ± 0.43 54.64 ± 0.47 57.36 ± 0.43

3 54.04 ± 0.73 51.84 ± 0.77 54.15 ± 0.23

4 52.29 ± 0.46 50.64 ± 0.33 51.99 ± 0.40

5 50.90 ± 0.28 50.09 ± 0.30 50.43 ± 0.23

Table 4. Error percentages on the test sets.

dim(z) SDT-3 SDT-4 SDT-5 SDT-L3 SDT-L4 SDT-L5 MLP-8 MLP-16 MLP-32

MNIST

Orig. x 11.96 7.99 7.51 2.67 2.57 2.30 7.76 4.74 3.16

50 1.37 1.08 0.76 0.72 0.71 0.63 0.56 0.54 0.52

100 1.02 0.96 0.98 0.66 0.67 0.74 0.59 0.61 0.59

200 1.11 0.84 0.95 0.76 0.76 0.62 0.68 0.55 0.57

Fashion-MNIST

Orig. x 20.95 29.80 20.83 11.94 11.50 11.35 16.66 14.50 13.47

50 10.46 10.24 10.56 7.36 7.28 8.08 8.02 7.55 7.73

100 10.12 10.40 9.76 7.89 7.36 8.05 8.16 7.67 7.56

200 12.28 9.14 10.37 7.55 7.18 7.08 7.59 7.51 7.81

CIFAR-10

50 9.38 9.52 9.18 8.85 8.76 8.64 8.94 8.66 8.99

100 9.71 9.27 9.67 8.83 8.72 8.96 9.02 8.69 9.07

200 11.83 10.90 9.95 8.91 9.60 9.75 9.16 9.01 8.85
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Fig. 2: Class densities on branches for the MNIST dataset. We can see that the
most of the nodes discriminates a set of classes.

In this example, each node nearly discriminates half of the classes. Although
this seems appealing, this might not happen every time. Sometimes, a gating
function discriminates only one class from others. If we use linear projectors
at leafs, this discrimination becomes softer. This is because classification can
happen at leaf nodes with linear projectors.

Fig. 3: We train a SDT-5 model with a CNN on MNIST dataset where z = 2.
Projections onto z feature space is visualized for the test set.

Figure: Colored vertical bars represent class distributions on each decision node
for MNIST. On the left of decision nodes are average gradients w.r.t. input (red
is high, blue is low).
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Fig. 2: Gating sensitivies and class distributions for a subtree trained on MNIST.

6 Conclusions and Future Work

We show that input dropout and dropconnect can be used as a regularization
method for soft decision trees, and may be alternatives to L2 regularization,
and of the two, input dropout seems the most interesting. On four image data
sets, we see that convolutional layers can be incorporated into a decision tree
and the whole can be trained in a coupled manner. The resulting architecture
is as accurate as a deep multi-layer perceptron, with the added advantage of
interpretability. The depth of a tree has a di↵erent interpretation than depth
in an MLP: In the former it corresponds to levels of granularity or resolution,
whereas in the latter it corresponds to levels of abstraction.

In our approach, we train the convolution layers together with the soft de-
cision tree. An alternative, which is our future work, is to use transfer learning:
We can take the convolution structure of a network trained on a much larger
data set and either use it as it is as a preprocessor or finetune with our data.
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Figure: red: positively high, blue: negatively high, gray: low
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Conclusions

CSDT performs comparable to a CNN with dense layers.

CSDT is interpretable. We can analyze its hierarchical decisions.

Dropout regularization in SDTs is slightly better
than L2 regularization.
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Thank you for your attention.
Questions are welcome.
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