Convolutional Soft Decision Trees

Alper Ahmetoğlu¹ Ozan İrsoy² Ethem Alpaydın¹

¹Department of Computer Engineering Boğaziçi University İstanbul, Turkey

²Bloomberg LP NY, U.S.A.

October, 2018

Soft decision trees

Response of a binary decision tree node m:

$$F_m(x) = F_{ml}(x)g_m(x) + F_{mr}(x)(1 - g_m(x))$$
 (1)

In a hard decision tree, $g_m(\mathbf{x}) \in \{0, 1\}$. In a soft decision tree, $g_m(\mathbf{x}) \in [0, 1]$, where

$$g_m(\mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x})}} \tag{2}$$

Leaves contain constant values, ρ_m . They can be also parameterized by adding a linear projector, $\rho_m = V x$.

Also known as hierarchical mixtures of experts (Jordan and Jacobs, 1993).

Because of this we can fit to data smoothly with fewer number of nodes.

Figure: A hard decision tree (left) and a soft decision tree (right). Reprinted from Irsoy et al. 2012.

Convolutional soft decision trees

- A more complex gating function results in a more complex model, therefore brings representational advantage.
- We can choose any differentiable g(x).
- In this work, we choose g(x) to be a convolutional neural network.

Regularization of soft decision trees

- When the representational power of g(x) increases model becomes prone to overfitting.
- Previously, L^2 and L^1 regularizations for soft decision trees are examined and L^2 is reported to work slightly better (Yıldız et al. 2013).
- We compare L^2 regularization with input dropout regularization.

Figure: Error surfaces with respect to different hyperparameter settings.

dim(z)	SDT-3	SDT-4	SDT-5	SDT-L3	SDT-L4	SDT-L5	MLP-8	MLP-16	MLP-32
MNIST									
$\overline{\text{Orig. } \boldsymbol{x}}$	11.96	7.99	7.51	2.67	2.57	2.30	7.76	4.74	3.16
50	1.37	1.08	0.76	0.72	0.71	0.63	0.56	0.54	0.52
100	1.02	0.96	0.98	0.66	0.67	0.74	0.59	0.61	0.59
200	1.11	0.84	0.95	0.76	0.76	0.62	0.68	0.55	0.57
Fashion	-MNIS	Г							
$\overline{\text{Orig. } x}$	20.95	29.80	20.83	11.94	11.50	11.35	16.66	14.50	13.47
50	10.46	10.24	10.56	7.36	7.28	8.08	8.02	7.55	7.73
100	10.12	10.40	9.76	7.89	7.36	8.05	8.16	7.67	7.56
200	12.28	9.14	10.37	7.55	7.18	7.08	7.59	7.51	7.81
CIFAR-	10								
50	9.38	9.52	9.18	8.85	8.76	8.64	8.94	8.66	8.99
100	9.71	9.27	9.67	8.83	8.72	8.96	9.02	8.69	9.07
200	11.83	10.90	9.95	8.91	9.60	9.75	9.16	9.01	8.85

Figure: Colored vertical bars represent class distributions on each decision node for MNIST. On the left of decision nodes are average gradients w.r.t. input (red is high, blue is low).

Figure: red: positively high, blue: negatively high, gray: low

Conclusions

- CSDT performs comparable to a CNN with dense layers.
- CSDT is interpretable. We can analyze its hierarchical decisions.
- Dropout regularization in SDTs is slightly better than L^2 regularization.

Thank you for your attention. Questions are welcome.