
Convolutional Soft Decision Trees

Alper Ahmetoğlu1(B), Ozan İrsoy2, and Ethem Alpaydın1

1 Department of Computer Engineering, Boğaziçi University,
Bebek, 34730 İstanbul, Turkey

{alper.ahmetoglu,alpaydin}@boun.edu.tr
2 Bloomberg LP, 731 Lexington Ave, New York, NY 10022, USA

oirsoy@bloomberg.net

Abstract. Soft decision trees, aka hierarchical mixture of experts, are
composed of soft multivariate decision nodes and output-predicting leaves.
Previously, they have been shown to work successfully in supervised clas-
sification and regression tasks, as well as in training unsupervised autoen-
coders. This work has two contributions: First, we show that dropout and
dropconnect on input units, previously proposed for deep multi-layer neu-
ral networks, can also be used with soft decision trees for regularization.
Second, we propose a convolutional extension of the soft decision tree with
local feature detectors in successive layers that are trained together with
the other parameters of the soft decision tree. Our experiments on four
image data sets, MNIST, Fashion-MNIST, CIFAR-10 and Imagenet32,
indicate improvements due to both contributions.

Keywords: Soft decision trees · Convolutional neural networks

1 Introduction

Decision trees are hierarchical models that are composed of decision nodes and
leaves. Decision nodes select among children nodes using a gating function that
splits the input space, and the leaves contain output predictions, i.e., output
labels in classification or real values in regression. In a hard decision tree, the
decision nodes choose one of the children; with a soft decision tree, originally
proposed as hierarchical mixture of experts [1], all the children are chosen but
with different probabilities. In a hard tree, we follow a single path from the root
to one leaf; in a soft tree, we traverse all the paths and reach all the leaves and we
take a convex combination of leaves weighted by the probabilities on each path.
This leads to a smoother fit and better generalization [2]. The parameters of the
decision nodes and the leaves can be trained together by minimizing empirical
error using gradient-descent.

Convolutional neural networks are shown to be successful in many appli-
cations, especially in computer vision [3]. The convolutional units have local
receptive fields and learn basic primitives, which in successive layers are com-
bined to learn more abstract features. The success of such networks imply that
such a representation leads to better generalization. Building on this idea, we
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 134–141, 2018.
https://doi.org/10.1007/978-3-030-01418-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_14&domain=pdf


Convolutional Soft Decision Trees 135

incorporate convolutional layers to soft decision trees, so that the tree works not
in the original input space but in the space learned by these convolutional layers.
We show that as in deep neural networks, the convolutional layers can be trained
together with the soft decision tree, leading to higher accuracy on four image
recognition data sets, MNIST, Fashion-MNIST, CIFAR-10 and Imagenet32.

This paper is organized as follows. In Sect. 2, we review the soft decision tree
architecture. In Sect. 3 we show how convolutional layers can be combined with
a soft decision tree. We discuss the effect of input dropout on soft decision trees
in Sect. 4. Our experimental results are given in Sect. 5; we conclude and discuss
future work in Sect. 6.

2 Soft Decision Trees

Assume we have a K-class classification problem with d-dimensional input x.
The response of a binary decision tree node m is defined recursively as follows:

ym(x) =

{
ρm if m is a leaf
yL
m(x)gm(x) + yR

m(x)(1 − gm(x)) otherwise
(1)

where ρm is a K-dimensional vector of predictions, yL
m(x) and yR

m(x) are
responses of the left and the right children of node m respectively. In a hard
decision node, the gating function gm(x) returns 0 or 1, and we choose either
the left or the right subtree. In a soft decision tree, gm(x) ∈ [0, 1], implements a
soft split:

gm(x) =
1

1 + exp[−(wT
mx + bm)]

(2)

If we consider a decision node with two leaves, this tree of depth one is
equivalent to a mixture of experts with two experts [4]. If we replace both leaves
with two such trees of depth one each, we get a tree of depth two, which is a
hierarchical mixture of experts [1]. Because of the continuity due to the sigmoid
gating function, the gating parameters, (wT

m, bm) over the whole tree and the
leaf values (ρm) can be trained in a coupled manner using stochastic gradient-
descent by back-propagating the empirical error from the root to leaves through
chain rule. Each decision node effectively takes a convex combination of its left
and right subtree children.

Note that gm(x) uses all d features of the input; that is we have a multi-
variate tree, as opposed to univariate trees that use one feature in each split.
A multivariate node defines a split of arbitrary orientation whereas a univariate
split is orthogonal to one of the axes. ρm stored at leaf m is a K-dimensional
vector of values: For each class, we traverse the tree using the same gating val-
ues but the corresponding element of ρm, we then softmax these to get posterior
probabilities, and then minimize the cross-entropy during training. With con-
stant leaves, we get a (smoothed) piecewise constant approximation. To get a
(smoothed) piecewise linear approximation, we can have a linear model in each
leaf, ρm = Vmx, where Vm is K × d. In this setting, we learn Vm by adding one



136 A. Ahmetoğlu et al.

more term, ∂ρ/∂Vm, to the chain rule when we back-propagate. Previously, we
have shown that soft decision trees can be used successfully in regression and
classification tasks [2], as well as for training unsupervised autoencoders [5].

3 Convolutional Soft Decision Trees

The performance of any learning algorithm directly depends on the quality of
the input representation, and as such, any feature extraction step that returns
better features helps accuracy. In applications where there is locality, having
early layers with units that learn local convolutions lead to better generalization
[3]. Indeed, all successful vision applications of deep learning use a number of
convolution layers that start from the raw image and learn incrementally more
abstract features in later layers. Once, we get to a representation that is abstract
enough and is independent of location, dense fully-connected layers are used to
learn to generate the correct output from that representation.

Using this same idea, one can incorporate convolutional layers to a soft deci-
sion tree too, where we learn the convolutional layers from scratch while also
training the soft decision tree. This implies that all the gating models will include
those convolutional layers and we back-propagate to update the parameters of
these layers too. If our soft decision tree has linear leaves, those also have the
convolution layers incorporated. In our implementation, we use weight sharing
where all the gating models and the leaves share the same convolution layers.
That is we back-propagate separately and then average them when we update.

4 Regularizing Soft Decision Trees

A full decision tree with depth P has (2P −1) ·d parameters in the gating nodes
and 2P · K parameters in constant leaves, or 2P · K · d parameters if the leaves
are linear. This makes a lot of parameters when P and/or d is high, and as with
neural networks, L2 or L1 regularization can be used. In L2 regularization, we
add a penalty term α‖w‖2 to the error function where w is the set of gating
parameters of the model and α is a hyper-parameter to adjust the relaxation.
This penalty term is α‖w‖ in L1 regularization. Applying L2 and L1 regulariza-
tion on soft decision trees are discussed in [6] and L2 regularization is reported
to work slightly better.

Another possibility is to use input dropout [7] where we set the elements of
wm to zero with some non-zero probability p, and scale wm by 1/p for each
gating function gm. In doing this, there are two possibilities: We can do the
dropout once and use the same non-dropped features in all gating models, or,
we can do it independently in each, which corresponds to dropconnect [8]. Later
in our experiments, we refer to the first one as input dropout and the second
one as input dropconnect.



Convolutional Soft Decision Trees 137

5 Experiments

5.1 Data Sets and Training Details

We have experimented on four datasets: MNIST, Fashion-MNIST, CIFAR-10
and Imagenet32. MNIST dataset contains handwritten digits by different writers
where a sample is a 28 × 28 gray-scale image with pixel intensity in the range
[0, 255]. There are 60,000 training and 10,000 test samples. Fashion-MNIST
is a recently constructed dataset of fashion products with image sizes and the
number of classes equal to those of MNIST. CIFAR-10 contains 60,000 32 × 32
colored images (RGB intensities) belonging to ten different classes. Downsampled
Imagenet is developed as a more difficult replacement for CIFAR-10. It contains
1,281,167 32 × 32 colored images belonging to 1,000 different classes. There are
50,000 validation images which we used as the test set. In training, we made the
training/validation split as 55K/5K for MNIST and Fashion-MNIST, 45K/5K
for CIFAR-10. Imagenet is a very large data set on which we do a single run with
recommended hyperparameters (as is frequently done) and thus did not need a
validation set.

On all datasets, we divide the pixel intensity values by 255. We did not
apply data augmentation for MNIST and Fashion-MNIST. For CIFAR-10 and
Imagenet32, we subtracted the mean of the training set for each sample. We
made random horizontal flips and shifted the image horizontal and/or vertical
up to four pixels randomly. We use stochastic gradient-descent with a momentum
factor of 0.9 in all our experiments. For MNIST and Fashion-MNIST, the learning
rate is set to 0.01. For CIFAR-10, the initial learning rate is set to 0.1 and is
divided by 10 at 32k and 48k iterations as in [9]. For Imagenet32, the initial
learning rate is set to 0.01 and is divided by 5 at every 10 epochs. The batch
size is 256 for MNIST and Fashion-MNIST, 128 for CIFAR-10 and Imagenet32.
A weight decay of 0.0001 is used in CIFAR-10 training.

5.2 Regularization Experiments

We employ input dropout, dropconnect, and L2 regularization with different
coefficients for different models. On three data sets, we used trees with depths
of one to five, and for each, we do five runs and report the average and standard
deviation of test errors in Tables 1, 2 and 3—we could not do these experiments
on Imagenet32 which is very large. Here, we only regularize the parameters of
the gating functions. We see that dropout and dropconnect give better results
than L2 regularization. While the results of dropout and dropconnect are not
significantly different, dropconnect seems to work slightly better with increasing
tree depth. This makes sense because we drop weights of gatings independently of
each other and we average over subtrees that use slightly different feature subsets
(as in a random forest). Based on these results, we adopted input dropconnect
with a keep probability of 0.5 as a regularizer in our later experiments.



138 A. Ahmetoğlu et al.

Table 1. Effect of dropout for different keep probabilities.

Tree depth 0.25 0.4 0.5 0.6 0.75

MNIST

1 5.04 ± 0.07 4.89 ± 0.15 4.93 ± 0.14 4.93 ± 0.06 4.93 ± 0.16

2 3.58 ± 0.09 3.58 ± 0.16 3.42 ± 0.09 3.48 ± 0.18 3.41 ± 0.18

3 3.15 ± 0.18 2.88 ± 0.17 2.87 ± 0.08 2.91 ± 0.16 2.94 ± 0.11

4 2.68 ± 0.07 2.67 ± 0.20 2.48 ± 0.15 2.64 ± 0.26 2.70 ± 0.06

5 2.55 ± 0.14 2.44 ± 0.26 2.47 ± 0.12 2.51 ± 0.25 2.57 ± 0.12

Fashion-MNIST

1 13.78 ± 0.10 13.59 ± 0.13 13.58 ± 0.11 13.42 ± 0.09 13.48 ± 0.06

2 12.66 ± 0.07 12.55 ± 0.26 12.49 ± 0.12 12.56 ± 0.24 12.47 ± 0.23

3 12.21 ± 0.10 12.09 ± 0.06 12.01 ± 0.27 12.03 ± 0.32 12.10 ± 0.09

4 12.05 ± 0.27 11.87 ± 0.14 11.95 ± 0.16 11.73 ± 0.16 11.86 ± 0.23

5 11.96 ± 0.23 11.72 ± 0.21 11.65 ± 0.17 11.49 ± 0.10 11.55 ± 0.25

CIFAR-10

1 59.10 ± 0.34 57.16 ± 0.57 57.47 ± 0.84 57.14 ± 0.60 56.96 ± 0.30

2 56.28 ± 0.79 54.96 ± 0.35 54.39 ± 0.79 54.20 ± 0.38 53.51 ± 0.57

3 53.69 ± 0.40 52.67 ± 0.75 51.78 ± 0.92 52.29 ± 0.37 51.26 ± 0.40

4 52.55 ± 0.47 51.05 ± 0.49 49.83 ± 0.48 50.98 ± 0.22 49.76 ± 0.47

5 51.02 ± 0.53 50.16 ± 0.35 48.77 ± 0.39 50.09 ± 0.87 48.84 ± 0.38

5.3 Convolutional Tree Experiments

On MNIST and Fashion-MNIST, the convolutional network structure we used
consists of two blocks, each of which has two consecutive convolutional layers
followed by a max-pooling layer. The number of filters are 8, 16 and 16, 32 for
the two blocks. Filter sizes are 3×3 with a stride of 1 for all convolutional layers,
and 2×2 with a stride of 2 for max pooling layers. After the second max pooling
layer, the data is projected onto a z-dimensional space by a fully-connected
layer where z is the hyper-parameter we finetune; it is the dimensionality of the
input fed to the tree for classification. For CIFAR-10 and Imagenet32, we use
the wide residual network (WRN) architecture previously successfully used on
these data sets [9,10]. The WRN architecture we use consists of 4 residual blocks
each of which has 6 convolutional layers. There is an additional convolutional
layer between residual blocks, which leads to a total of 28 convolutional layers.
In WRN-28-1, the number of filters are 16, 32 and 64 for residual blocks, and in
WRN-28-2 these numbers are doubled. We add another fully-connected layer to
the WRN to map to a specific z dimension which is the input to the tree.

We compare three different models. SDT-k is a convolutional soft decision
tree of depth k that takes the output of the convolutional network as its input.
SDT-Lk, is the same as the first model except that the leaves contain linear



Convolutional Soft Decision Trees 139

Table 2. Effect of dropconnnect for different keep probabilities.

Tree depth 0.25 0.4 0.5 0.6 0.75

MNIST

1 4.93 ± 0.06 4.93 ± 0.17 4.92 ± 0.08 4.83 ± 0.02 4.84 ± 0.06

2 3.74 ± 0.10 3.43 ± 0.07 3.42 ± 0.17 3.45 ± 0.17 3.43 ± 0.13

3 2.87 ± 0.14 2.67 ± 0.15 2.74 ± 0.10 2.77 ± 0.11 2.95 ± 0.37

4 2.43 ± 0.12 2.41 ± 0.09 2.55 ± 0.15 2.60 ± 0.08 2.58 ± 0.09

5 2.33 ± 0.17 2.24 ± 0.11 2.31 ± 0.11 2.48 ± 0.12 2.44 ± 0.17

Fashion-MNIST

1 13.74 ± 0.09 13.71 ± 0.09 13.61 ± 0.17 13.62 ± 0.13 13.53 ± 0.15

2 12.70 ± 0.05 12.71 ± 0.23 12.60 ± 0.17 12.55 ± 0.16 12.46 ± 0.28

3 12.08 ± 0.20 11.98 ± 0.21 12.06 ± 0.18 11.84 ± 0.20 11.94 ± 0.21

4 11.83 ± 0.18 11.65 ± 0.22 11.53 ± 0.20 11.82 ± 0.19 11.59 ± 0.32

5 11.59 ± 0.12 11.64 ± 0.25 11.46 ± 0.19 11.54 ± 0.17 11.54 ± 0.25

CIFAR-10

1 57.33 ± 0.22 57.24 ± 0.51 56.97 ± 0.40 57.49 ± 0.34 56.88 ± 0.38

2 55.50 ± 0.78 55.23 ± 0.34 54.48 ± 0.23 54.33 ± 0.43 54.71 ± 0.29

3 53.60 ± 0.29 53.05 ± 0.35 52.84 ± 0.46 52.70 ± 0.45 52.49 ± 0.51

4 51.42 ± 0.59 51.12 ± 0.67 50.89 ± 0.44 51.09 ± 0.41 50.67 ± 0.71

5 50.01 ± 0.27 50.26 ± 0.33 49.96 ± 0.31 50.18 ± 0.60 49.77 ± 0.53

projectors instead of constant vectors. In MLP-k we follow the convolution layers
with a hidden layer of k units and then a layer of softmax units; both layers are
fully connected and all are trained together, and we take k to be comparable
with the number of gating units on SDT.

In Table 4, results are given on MNIST, Fashion-MNIST and CIFAR-10. For
MNIST and Fashion-MNIST, we also give results where we use the original
input without any convolutional layers—we did not do this for CIFAR-10 and
Imagenet32 because one cannot get any decent accuracy on them without any
convolutional layers. First we see that convolutional layers help significantly,
both with SDT and MLP. We also see that SDT-L works generally better than
SDT. On MNIST, Fashion-MNIST and CIFAR-10, we see that SDT-L is almost
as accurate as MLP with an equivalent number of hidden units; sometimes it is
slightly better, sometimes it is slightly worse.

On Imagenet32 where we could not run many models, we compare SDT-L and
the base model which is an MLP variant, and we see in Table 5 that again SDT
is almost as accurate. These experiments also indicate that deep convolutional
layers can be trained with the error signal that is back-propagated through the
soft decision tree without any problem.



140 A. Ahmetoğlu et al.

Table 3. Effect of L2 regularization for different α coefficients.

Tree depth α = 1 × 10−4 α = 5 × 10−5 α = 1 × 10−5

MNIST

1 5.00 ± 0.03 5.07 ± 0.17 5.13 ± 0.11

2 4.15 ± 0.30 3.84 ± 0.22 3.74 ± 0.24

3 3.60 ± 0.18 3.52 ± 0.20 3.22 ± 0.17

4 3.55 ± 0.13 3.19 ± 0.15 3.06 ± 0.24

5 3.53 ± 0.19 3.28 ± 0.17 3.03 ± 0.12

Fashion-MNIST

1 13.81 ± 0.12 13.78 ± 0.14 13.79 ± 0.15

2 13.19 ± 0.26 12.92 ± 0.15 12.88 ± 0.13

3 12.74 ± 0.20 12.70 ± 0.24 12.41 ± 0.22

4 12.71 ± 0.16 12.38 ± 0.22 12.07 ± 0.17

5 12.65 ± 0.12 12.48 ± 0.06 11.84 ± 0.12

CIFAR-10

1 60.77 ± 0.28 57.51 ± 0.31 61.13 ± 0.77

2 57.45 ± 0.43 54.64 ± 0.47 57.36 ± 0.43

3 54.04 ± 0.73 51.84 ± 0.77 54.15 ± 0.23

4 52.29 ± 0.46 50.64 ± 0.33 51.99 ± 0.40

5 50.90 ± 0.28 50.09 ± 0.30 50.43 ± 0.23

Table 4. Error percentages on the test sets.

dim(z) SDT-3 SDT-4 SDT-5 SDT-L3 SDT-L4 SDT-L5 MLP-8 MLP-16 MLP-32

MNIST

Orig. x 11.96 7.99 7.51 2.67 2.57 2.30 7.76 4.74 3.16

50 1.37 1.08 0.76 0.72 0.71 0.63 0.56 0.54 0.52

100 1.02 0.96 0.98 0.66 0.67 0.74 0.59 0.61 0.59

200 1.11 0.84 0.95 0.76 0.76 0.62 0.68 0.55 0.57

Fashion-MNIST

Orig. x 20.95 29.80 20.83 11.94 11.50 11.35 16.66 14.50 13.47

50 10.46 10.24 10.56 7.36 7.28 8.08 8.02 7.55 7.73

100 10.12 10.40 9.76 7.89 7.36 8.05 8.16 7.67 7.56

200 12.28 9.14 10.37 7.55 7.18 7.08 7.59 7.51 7.81

CIFAR-10

50 9.38 9.52 9.18 8.85 8.76 8.64 8.94 8.66 8.99

100 9.71 9.27 9.67 8.83 8.72 8.96 9.02 8.69 9.07

200 11.83 10.90 9.95 8.91 9.60 9.75 9.16 9.01 8.85



Convolutional Soft Decision Trees 141

Table 5. Error percentages on Imagenet32 validation set.

Top-1 error Top-5 error

Base SDT-L5 Base SDT-L5

WRN-28-1 67.10 66.86 42.33 41.91

WRN-28-2 56.40 56.33 31.14 31.34

6 Conclusions

We show that input dropout and dropconnect can be used with soft decision
trees as alternatives to L2 regularization; of the two, input dropout seems the
more interesting. On four image data sets, we see that convolutional layers can
be incorporated into a decision tree and the whole can be trained in a coupled
manner. The resulting architecture is as accurate as a deep MLP with the added
advantage of interpretability. The depth of a tree has a different interpretation
than in an MLP: In the former it corresponds to levels of granularity or resolu-
tion, whereas in the latter it corresponds to levels of abstraction.

Acknowledgements. The numerical calculations are performed at TUBITAK
ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

References

1. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm.
Neural Comput. 6(2), 181–214 (1994)

2. İrsoy, O., Yıldız, O.T., Alpaydın E.: Soft decision trees. In: Proceedings of the
International Conference on Pattern Recognition, Tsukuba, Japan, pp. 1819–1822
(2012)

3. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network.
In: Advances in Neural Information Processing Systems, vol. 2, pp. 396–404 (1990)

4. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local
experts. Neural Comput. 3(1), 79–87 (1991)

5. İrsoy, O., Alpaydın E.: Autoencoder trees. In: Asian Conference on Machine Learn-
ing, Hong Kong, China, pp. 378–390 (2015)

6. Yıldız, O.T., Alpaydın E.: Regularizing soft decision trees. In: International Sym-
posium on Computer and Information Sciences, Paris, France (2013)

7. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

8. Wan, L., Zeiler, M., Zhang, S., LeCun, Y., Fergus, R.: Regularization of neural
networks using DropConnect. In: International Conference on Machine Learning,
Atlanta, GA, pp. 1058–1066 (2013)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
https://arxiv.org/abs/1512.03385 (2015)

10. Zagoruyko, S., Komodakis, N.: Wide residual networks. https://arxiv.org/abs/
1605.07146 (2016)

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1605.07146

	Convolutional Soft Decision Trees
	1 Introduction
	2 Soft Decision Trees
	3 Convolutional Soft Decision Trees
	4 Regularizing Soft Decision Trees
	5 Experiments
	5.1 Data Sets and Training Details
	5.2 Regularization Experiments
	5.3 Convolutional Tree Experiments

	6 Conclusions
	References




