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Abstract—This article introduces and summarizes the emerg-
ing field of Neuro-Symbolic Robotics. The advancements in
computational power, robust neural structures, and extensive
data have positioned Neural Networks as the preferred solution
for robotic challenges involving emergent behavior, learning,
adaptation, and, more recently, reasoning and communication.
Despite these strengths, the deployment of robots in real-world
settings demands properties like verifiability, explainability, and
interpretability, which Neural Networks lack. Furthermore, neu-
ral network-based models experience difficulties with general-
ization and extrapolation, thus restricting their use. Historically,
symbolic systems have been integral to intelligent robotics due
to their verifiability, explainability, and scalability, though their
manually programmed frameworks fail to manage the complexity
and diversity of the robot’s continuous and high-dimensional
environments effectively. This paper examines various robotic
architectures that combine neural networks with symbolic sys-
tems in diverse manners to leverage their distinct advantages.
We classify these robotic systems into four main categories:
intertwined, coupled, non-uniform neuro-robotic systems, and
neuro-symbolic translation. We provide an in-depth analysis of
the strengths and weaknesses of these systems and outline the
future challenges in this domain.

Index Terms—Neuro-Symbolic AI, Neuro-symbolic Artificial
Intelligence

I. INTRODUCTION

Intelligent Robotics is characterized by the convergence of
artificial intelligence and robotics, focusing on the creation of
machines that can independently learn, reason, and execute
complex tasks in ever-changing environments. The primary
challenges in this field involve developing representations that
are robust but yet adaptable, thereby enabling high perfor-
mance in complex tasks as well as allowing reasoning for
safety and explainability.

In contrast to domain-specific machine learning problems
such as classification and regression, a robot needs to process
a continuous stream of sensorimotor data yet act on a world
that is structured as a network of discrete entities with a
range of relations among them. Thus, intelligent robots need
cognitive mechanisms to work with continuous sensory input
and abstract symbolic structures [1]. In the following, we
first address them separately under Learning Systems, and
Symbolic Systems and later discuss how the two worlds can
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Fig. 1. Neuro-Symbolic Robotics related publication histogram, obtained via
Google Scholar scraping. The data shows significant growth from 2021.

be intertwined together1.
Learning Systems. The groundbreaking advances in deep

neural networks and their effective application in artificial
intelligence raise the question of whether deep learning with
big data is the solution that Intelligent Robotics has been
seeking. The recent state-of-the-art robotic learning studies
employ some form of (deep) neural network architecture,
delivering superior performance compared to earlier traditional
machine learning methods. Yet, the lack of transparency in
neural networks poses serious concerns about their reliability,
robustness, and safety [1].

Another significant criticism pertains to the brittleness (be-
ing susceptible to adversarial attacks) of the models [5], as well
as the data efficiency and computational expense associated
with robotic implementations [6]. While the computing cost
can potentially be mitigated by suggesting a central pre-
training that is performed once and subsequently deployed
across various locations with minimal or no further training,
addressing the black-box issues remains challenging because
post-hoc explanations of neural network outputs may lack
the reliability needed to persuade end-users to integrate these
technologies into actual robots. For example, although recent
Large Language Model (LLM) based systems allow pseudo-
reasoning, their reasoning capabilities are not verifiable or
reliable [7], even though they may be optimized through
data fine-tuning and/or reinforcement learning with human
reward labeling for valid chain-of-thought generation. Thus, in

1The term symbol is commonly used in the fields of AI and robotics within
the context of symbolic AI, which is influenced by the physical symbol
system hypothesis [2]. In this paper, we primarily use the term symbol in
this sense. As Steels distinguished between m-symbols and c-symbols, the
term symbol is often used with two fundamentally different meanings [3].
While this distinction is crucial when addressing symbols and meaning-
making in cognitive science and semiotics, in this paper, we primarily focus on
engineering problems in the field of robotics. For a more detailed discussion,
please refer to the paper authored by some of the present authors [4].
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Fig. 2. A taxonomy of Neuro-Symbolic Robotics

intelligent robotics, the reasoning capabilities of these systems
are limited to constrained laboratory settings.

Computationally, neural networks can represent proposi-
tional logic and a restricted subset of first-order logic, but
cannot represent full functionality and representational power
of first-order logic, according to Marcus [6]. Thus, albeit the
impressive reasoning-like abilities of LLMs, it is not clear
how formally defined computational semantics can be neurally
embedded in the operation of LLMs to address the questions
of reliability, trustworthiness, and safety in robotics.

Symbolic Systems. Symbolic systems are reliable in terms
of planning and reasoning abilities, as computation steps can
be explained and proved for correctness [8], [9]. However,
they lack flexibility [10]. For example, an execution plan can
be correct but still may fail in a given environment setting
if the symbols used to capture the current setting lack the
required resolution or sensitivity. This is a classical example
of the problem of pre-defining a set of symbols and rules
to represent the sensorimotor experience of a robot, which is
often called the symbol grounding problem [11]. Regardless
of how well a symbolic system may be designed, it inevitably
becomes fragile when confronted with minor alterations in the
embodiment, environment, or task that were not anticipated
during the design phase. Another issue with symbolic systems
is that they allow reasoning only in symbolic space. However,
the robotics tasks of planning, monitoring, and validation may
require representations at multiple levels of abstraction beyond
a single symbolic level. Although the levels of abstraction that

are used in robotics literature are delineated in [10] within the
context of natural language representation, a theory of multi-
level symbolic manipulation bridging the low-level sensory
input with higher-level representations is lacking [5].

Neuro-Symbolic Systems. With the recent advances in deep
neural networks, it has become more possible to address
the symbol grounding problem by letting advanced neural
network architectures learn symbolic representations. These
representations can be not only used in symbolic manipulation
systems for reasoning and planning but also equip the robot
with different capabilities or improve the existing ones.

Although there are very preliminary efforts for proposing
general paths for adapting neuro-symbolic approaches into,
for example, industrial [12], surgical [13], or assistive [14]
robotics, a general overview of the current studies and a
possible generic architecture that utilizes full-power of both
neural and symbolic systems are still missing. In the remaining
of the paper, we systematically analyze key robotic works from
the literature that have used symbolic and learning systems
together with a varying extent.

The analysis presented in this article is guided by the
taxonomy given in Fig. 2 which categorizes robotic studies
into four main groups based on the interplay between the
neural and symbolic engines used. In the first category, the
neural and symbolic engines are intertwined in such a way
that the system can only operate with both engines running.
Most methods in this category utilize the neural engine to
generate representations that are to be used by the symbolic
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engine. Next are the coupled neuro-symbolic methods in which
the main engine, either neural or symbolic, is supported by
the other to arrive at a decision. The main characteristic of
this group is that the main engine can work in isolation,
and running both engines usually increases the performance.
Methods in the third category are the translation-based systems
that either translate the symbolic rules into neural-processable
data, or distill the information in a neural engine into symbolic
knowledge, allowing interpretability. To be precise, the meth-
ods falling into the fourth category do not possess a neural
or symbolic framework that would qualify them as genuine
neuro-symbolic methods. Nevertheless, they are part of this
review because they are precursors of their neural counterparts
and due to their potential for adaptation into such methods.

II. DEFINITIONS

Symbolic Representation corresponds to the encoding of
robot perception, action, or state in discrete space. Continuous
Representation corresponds to continuous encoding of robot
perception, action, or state that might be used as input and/or
output of a Neural Network system.

Symbol Engine corresponds to the methods and algorithms
used for manipulating symbols. It might correspond to classi-
fiers such as decision trees, Monte-Carlo search trees used
for multi-step prediction, operations over Domain Specific
Language (DSL), or full-fledged off-the-shelf AI planning
in standard symbolic languages such as Planning Domain
Description Language (PDDL) [15].

Neural Engine corresponds to Neural Network used in
discriminatory or generation tasks. The inputs and outputs of
the Neural Engine, as well as the intermediate representations,
might be discrete or continuous valued depending on the task.

III. A. INTERTWINED NEURO-SYMBOLIC ROBOTICS

In this category, the representations, rules, or programs used
by the Symbolic Engine are generated by the Neural Engine.
A key distinction among these types of approaches is whether
program generation is at the core, or the symbol discovery is
undertaken by the neural system or not. Accordingly, we have
three main subcategories, which are detailed next.

A.1 Neural Engine Learns for Pre-defined Symbols

In this category, the symbols and the operators used by
the Symbol Engine are pre-defined based on the task and
domain requirements. The Neural Engine either learns the
mapping between these discrete symbols and the continuous
sensorimotor experience of the robot or the set of symbolic
pre-conditions and effects of the operators from the robot’s
experience.

A.1.a Symbol grounding: For constrained domains and
tasks, planning is possible with pre-defined sets of predicates,
operators, and pre-conditions and effects of these operators. In
these situations, the representational gap between the symbols
and the continuous representation the robot faces should be
addressed. For this, in one study, given pre-defined predicates
in pre- and post-conditions of manually designed transition
rules, the robot learned the mapping from its own percepts

Fig. 3. The relation between Neural and Symbolic Engines in Intertwined
Neuro-Symbolic Robotics. In these systems, the robot’s continuous interaction
experience is used by the Neural Engine to learn discrete symbols and/or rules
and propagated to the Symbolic Engine for high-level reasoning.

to the corresponding predicates post-conditions using kernel
perceptrons [16]. More recently, in [17], the system learned to
process RGB image patches conditioned on canonical object
views into embeddings that can be classified into single and
relational object-object logical predicates encoded in action
preconditions from demonstrations to be used in planning.
Given a robot interaction video dataset with annotated actions
and manually implemented pre-conditions and effects, [18]
trained classifiers that map the bounding boxes of objects to
the corresponding symbols. When applicable, the approach
taken in this category is effective, but the fixed set of predicates
and pre-defined rigid rules and operators limit the practical
deployment of the method to well-structured environments
and tasks. In the next section, we provide an overview of
the methods that relax this restriction by learning a set of
predicates for planning operators.

A.1.b Pre-condition and effect learning: The rigidity in the
pre-defined transition rules used can be relaxed by learning the
set of predicates for the pre-conditions and post-conditions of
the operators used by the Symbol Engine. In this category,
the mapping between the sensorimotor space of the robot
and the symbols has been established before, and the robot
basically learns the set of predicates for pre-conditions and
effects of actions. With this approach, [19] learned a list of
pre-condition and effect predicates, first segmenting the human
demonstrations into actions, then extracting the relevant pre-
conditions and post-conditions based on counting heuristic,
and finally generating the related planning operators. In the
end, an externally given goal can be satisfied by a sequence
of actions using Fast Downward PDDL planner [20]. [21]
learned action pre-conditions and effects in the form of lists
of symbolic predicates from provided human demonstrations
in the manipulation domain and verified through the PDDL
planner. Given pre-defined symbolic predicates, [22] learns a
set of parameterized actions, with their corresponding pre-
condition and effect predicates in a manipulation domain.
[23], on the other hand, proposed to learn the planning
domaies from the observed traces using Behavior Trees as in-
termediate human-readable structures. Given a symbolic goal,
[24] learned the necessary symbolic operators to be able to
synthesize a plan and its low-level controller implementation
in an RL framework. Following a different approach, [25]
used preconditions and effect symbols to detect task-specific
deficiencies and support humans in action feasibility, rather
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than plan generation. These studies are constrained to a pre-
defined set of symbols, whereas the robots might need to
invent new symbols in changing environment conditions and
new environments. In the next section, we cover the neuro-
symbolic studies that address unsupervised or self-supervised
discovery of such symbols.

A.2. Neural Engine Discovers Symbols

In this section, we cover the studies where Neural Engine is
used to discover perceptual (e.g., [26]), action (e.g., [27], [28]),
or sensorimotor (e.g., [29]) symbols that are directly used by
the Symbol Engines for planning and for other purposes.

A.2.a Perceptual Symbol Emergence (PSE): Neural En-
gines, in this category, form or discover symbols [30] in
the continuous sensory/perceptual space of the robot. These
symbols are typically employed as predicates in planning
preconditions and post-conditions of action operators. These
studies optimize the process of organizing the continuous
perceptual space to find discrete symbolic categories using
different approaches and metrics, as follows.

a) A.2.a.1 Optimize PSE for reconstruction: From the
perspective of perceptual symbol systems [31], one of the
primary purposes of symbolic representation is to enable
the reconstruction of sensorimotor observations by structuring
information into compact and meaningful representations. In
particular, in multi-modal learning, a category inferred from
one modality (e.g., vision) can be used to reconstruct another
modality (e.g., haptics) through cross-modal inference. For
minimizing reconstruction error, probabilistic generative mod-
els (PGMs), which incorporate discrete categories as latent
variables to predict multi-modal observations, have been ac-
tively pursued from the early to mid-2010s [32]. These studies,
in general, clustered sensorimotor data, formed categories,
and connected these categories to symbolic representations.
symbol emergence in robotics has evolved into increasingly
complex architectures As systems for symbol emergence in
robotics have become increasingly complex, a general frame-
work for distributed development and integration, (Neuro-
)SERKET, has been proposed, which is aimed to facilitate
modular and scalable implementation of these systems [33],
[34]. This approach has led to the concept of a large-scale
cognitive architecture, namely a whole-brain probabilistic gen-
erative model [35].

The studies above focused on probabilistic learning and
inference; however, they did not fully exploit Neural Engines
within their frameworks. On the other hand, [36] studied
whether a deep reinforcement learning system could entail
the development of high-level neural encodings that might
be viewed as antecedents of symbolic representations. They
showed that even without explicit design or engineering, neural
responses that resemble abstract symbol-like representations
might emerge in their system. Recently [37] proposed to first
discover skill segments from demonstration trajectories and
then apply unsupervised clustering and SVM classification to
identify and learn the mapping of the potential termination
states of each learned skill. Eventually, these are used to learn
the relation between natural language sentences and sequences

of the learned abstract symbols using Seq2Seq recurrent neural
network. While these methods can categorize the continuous
perceptual space of the robot into discrete symbols, whether
such categorization is effective for downstream tasks has not
been addressed in these studies. In the next subsections, we
cover the methods that scaffold the categorization process
by taking into account the effectiveness of the symbols with
respect to the task goals.

A.2.a.2 Optimize PSE for action effect prediction: The
previous unsupervised clustering approach finds discrete sym-
bols without any guarantee of being useful for the Symbol
Engine. To address this problem, a number of research groups
investigated how to discover symbols that are guaranteed to
be useful for one-step action effect prediction, which is the
most basic step of symbolic planning. [26] proposed and
realized a general neural framework, namely DeepSym, that
translates the robot’s raw sensorimotor experience into the
symbolic domain. With this architecture, given a continuous
interaction experience, the robot can discover object and effect
symbols that can be automatically translated to Probabilistic
Problem Domain Definition Language (PPDDL) for generat-
ing high-level symbolic plans. To achieve this, a predictive
deep encoded-decoder network with a binary bottleneck layer
was trained with initial and outcome scene images to extract
action and effect-grounded object and outcome categories,
which in turn were used to make single-step action predictions.
As an intermediate step, a decision tree was constructed
based on the interaction of the robot now represented with
the discovered symbols corresponding to object and effect
categories. Subsequently, Each path in the decision tree was
converted to an operator in PPDDL format, allowing the use
of off-the-shelf planners as Symbol Engines. The system was
verified in a table-top environment, where symbols such as
pushable, rollable, or insertable were discovered and used to
make effective plans, for example, to build towers of varying
heights by manipulating the objects in the environment. A
limitation of the work [26] is that it can generate symbols
for single or pairs of objects. As such, preconditions and
effects are constrained to planning operators involving single
or paired object predicates. Yet, many complex actions involve
interactions with varying numbers of objects, or the effects
of actions influence multiple objects in environments such
as cluttered or articulated settings. Towards addressing this
issue, DeepSym was extended by incorporating a transformer
[38] based structure that learns what object features had to
be attended through a set of attention weights [39], [40]. As
in DeepSym [26], these weights were channeled through a
discrete activation layer that generates relational symbols that
capture the interactions in the environment. The discovered
relational symbols between objects are then combined with
the discovered single-object symbols to predict the outcomes
of robot actions for the objects available to the robot. In the
follow-up work, [41] enabled use of off-the-shelf planners by
converting the discovered symbolic interactions into PDDL op-
erators. This study showed that complex plans involving mul-
tiple objects can be made generated on the symbols discovered
by the system, thereby addressing object affordances [42] to
some extent, however the generalization based on affordances
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of complex shaped objects have not been addressed.
A.2.a.3 Optimize PSE for planning: The symbols that

are effective in single-step action prediction do not necessarily
guarantee optimal planning performance. Therefore, it is im-
portant to study how to maximize the utility of the discovered
symbols in improving long-horizon planning performance. In
this vein, [43] proposed to learn abstract relational symbolic
object representations from visual observations in an unsu-
pervised way and use them to make multi-step plans. Neural
Engine output was used as the parameters of a Hidden Markov
Model-like probabilistic model, which in turn could be used as
the Symbol Engine. The model was used for model-based RL
in simulated tower-building tasks with simple blocks, given
the images of goal and initial block configurations. While
this system could make symbolic plans with the discovered
object symbols effectively, the method was verified in a
simulation environment with abstracted robot actions such as
pick and place locations. In other words, it discarded the
complex dynamics between the robot’s embodiment, robot’s
interactions and its physical environment.

A.2.b Action Symbol Emergence (ASE): The studies intro-
duced up to now focused on perceptual symbol formation
and assumed an existing finite action repertoire. In a more
general setting, lifelong cognitive robotic systems need to
extend their action repertoire [44] through interactive learning.
In this section, we review the studies where action symbols
were discovered and used in Symbol Engines.

A.2.b.1 Optimize ASE for action effect prediction: [28]
proposed to formalize operator learning problem in the Task
and Motion Planning (TAMP) framework. The proposed sys-
tem learns operators on previously acquired action symbols,
which can be defined as a lossy abstraction of the transition
model of the domain. Following [28], [45] proposed neuro-
symbolic relational transition models (NSRTs) in which a
task plan skeleton is generated using a symbolic engine that
describes the high-level transitions, and then the neural engine
searches for low-level operator parameters. If the plan skeleton
is not downward refinable, i.e., if there is no parameterization
of the lower-level skill that makes the plan successful, a
new plan skeleton is generated. Hence, bilevel planning in
both discrete and continuous levels were established allowing
the robot to make detailed plans considering the geometric
information. However, NSRTs were learned from a given set of
parameterized skills, whereas in [46], these skills were learned
from low-level demonstrations as well, providing a complete
bilevel operator learning stack.

In [47] a hierarchical RL framework is adopted and a
diverse set of actions are discovered while simultaneously
learning symbolic forward models through intrinsic motivation
signals given pre-defined state abstractions. As the Symbol
Engine, the system used the breadth-first search method where
each expansion corresponded to the learned symbolic forward
model and executed one-by-one in order to reach the goal.
In [48], [49], it is proposed to learn constraints that address
the effectiveness of actions using Gaussian Processes. They
proposed a sampling method for creating a rich set of potential
action parameters along with the skills. Given a goal and
learned parametric motion primitives, the planning system

receives perceptual state estimates from the Neural Engine to
generate a plan using their so-called PDDLStream framework
[50], [51]. Last but not least, [52] discovers action symbols
from human demonstrations and exploits visual language
models (VLMs) not only to label those actions but also to
generate plans through their scene interpretation and reasoning
capabilities.

A.2.b.2 Optimize ASE for planning: While the studies in
the previous sections either used unsupervised clustering or
self-supervision based on single-step effect prediction to learn
predicates, [53] learned symbolic predicates with a surrogate
objective for multi-step planning. They used interactions ob-
tained from demonstrations rather than the robot’s own self-
exploration experience of the world. In follow-up work, [54]
reduced the complexity of the learned operators by focusing on
a subset of abstract effects. These studies not only learn action
symbols but also find the motion parameters that would allow
TAMP. Although symbolic predicates are learned as well,
these are defined over already available high-level predicates,
which might not be realistic to assume in life-long scenarios.
Following [53], [55] proposed to learn predicates by actively
collecting information by querying an expert. [56] jointly
learned a set of symbolic action abstractions and their low-
level controllers utilizing LLMs in an interactive planning
loop.

Studies mentioned in this section either assume the exis-
tence of high-level predicates or a set of demonstrations from
which a good set of state symbols can be learned. As such, the
low-level policies of operators are learned with supervision,
either in the form of state symbols or demonstrations that solve
the task. It is also worth mentioning option discovery meth-
ods [57]–[61] that focus on learning these low-level policies
directly from raw sensory space by exploration. While these
methods do not directly use a symbol engine, they provide
a finite number of low-level policies with their initiation and
termination conditions overlapped in the state space, which
makes the ground for action and state symbol learning.

A.2.c Percept-Action Symbol Emergence (PASE): While the
previous studies focused on discovering either perceptual or
action symbols, some recent studies investigated the possibility
of creating perceptual and action symbols together from the
sensorimotor experience of the robot [29]. [62], [63] used
critical regions [64], [65], high-density regions over the state
space, as state abstraction targets. After learning the state
abstractions, action abstractions were learned on top of them.
To obtain the density distribution of a state space, low-level
demonstrations generated by motion planners and controllers
were used. More recently, [66], [67] extended [53] by first
learning high-level predicates directly from raw state repre-
sentations using visual language models (VLMs) and then
learning operators defined over these predicates.

A.3 Neural Engine learns Symbolic Programs

Within this category, all symbolic programs are crafted
by the Neural Engine—predominantly using Large Language
Models (LLMs)—and subsequently processed by the Symbol
Engine. In the work of [68], a Neural Engine (LLM) was
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Fig. 4. The relation between Neural and Symbolic Engines in Coupled Neuro-
Symbolic Robotics. In a nutshell, they can run independently and support each
other for robot control.

used to produce parallel plans, which were then converted
into behavior trees and executed by the robot. The conversion
here used Prolog as a bridge between symbols given in natural
language and the behavior trees. [69] trained LLMs to produce
neuro-symbolic task planners, which are consistent with PDDL
syntax. With this, they obtained better scalability when the
domain complexity was increased. This approach also enabled
the production and execution of actions without waiting for
the whole plan to be generated. In [70], a pre-trained LLM
as a Neural Engine was used to learn symbolic predicates, in
the form of Python program segments, from human language
feedback during robot interactions. Subsequently, symbolic
operators were learned through a clustering algorithm, en-
abling plan generation.

Last but not least, [71] provided interpretability in symbolic
decision-making in autonomous driving by integrating neural
and symbolic approaches while also achieving safe and con-
sistent behavior. For this, a Neural Engine was trained to select
operations from a set of symbolic pre-defined operations. This
allowed the generation of a sequence of operations given
goals in Domain Specific Language (DSL), which was used
by the Symbol Engine for planning and control. With the
recent advances in LLMs, we expect to see more studies in
this category. We expect to see more studies in this category
with the recent advances in LLMs, where inputs in multiple
modalities and user-specified structured outputs facilitate the
interface between natural language and DSLs [7].

Discussion

The intertwined neuro-robotics studies tightly integrate Neu-
ral and Symbol Engines, such that the Symbol Engines are
designed to operate only with the representations or rules
that are required to be generated by the Neural Engines. In
these studies, multi-step plans are generated using PDDL-like
languages and executed in real or simulated robots, mostly in
the manipulation domain. They mostly learn from interactions
with the environment, whereas learning from demonstration
or reinforcement learning approaches are used less frequently.
The studies that learn pre-defined symbols (A.1) or discover
symbols (A.2) do not generally go beyond planning and are
not used for natural language communication. The studies that
learn symbolic programs (A.3), on the other hand, integrate

recent LLM modules and, therefore, can address natural lan-
guage. However, few of them discuss verifiability issues. Last
but not least, they mostly use a given set of symbols, which
limits their general use.

IV. B. COUPLED NEURO-SYMBOLIC ROBOTICS

In this section, we overview the robotic systems where
Neural Engine and Symbol Engine modules interact with each
other by combining their outputs or by supporting each other.
However, they are not as tightly connected as in the inter-
twined approaches, i.e. they may work as separate modules
for robot control.

B.1 Balanced Neural and Symbol Engines
Say-Can [72] has been one of the first studies that benefited

from the reasoning capabilities of LLMs for robot control.
Given a goal, Say-Can used a language model (PALM [73]),
which provided high-level semantic knowledge about a given
task and generated a list of actions to achieve the task. To
ground the corresponding actions in the robot’s actual world,
an affordance-based value function module was implemented,
which was used to weigh and filter the actions produced
by the language model. This method can be considered the
first LLM-based model capable of completing long-horizon
natural language instructions by using a mobile manipulator.
Neural and Symbol Engines were conceived as building blocks
in [74], encompassing a modular approach where action
primitives were defined to handle independent sub-tasks. The
input query was processed by a language parser, transforming
it into an executable program composed of such primitives.
Note that some primitives were symbolic (e.g., counting), and
others were implemented with neural networks (e.g., visual
grounding). [75] used a Symbol Engine to select a list of
actions, using First-Order Logic (FOL) rules that represent
human background knowledge about the driving environment
in each RL exploration step, and a Neural Engine, which ap-
proximates the Q value function, to select the action to execute
following the learned policy. With this, they ensured safety and
also enabled control in the continuous state and action space.
In another study, [76] integrated logical rules, ontologies,
and LLM-based planners and exploited symbolic information
to improve the ability of LLMs to generate recovery plans.
Given instructions, their robot started executing the actions
for the plan generated by LLM. The effect of each action
was observed and provided as input to the sub-goal verifier,
which used an ontology to decide whether the action was
successful or not. In case of failure, the ontology was again
used to determine the recovery strategy, which was provided to
the LLM planner for re-planning. In [77], human instructions
were translated into executable robot plans by using LLMs
to decompose the tasks into sub-goal descriptions that were
executed by the planner sequentially. They used scene graphs
as the intermediate representations. [78] combined symbolic
and geometric scene graphs for vision-based long-horizon
hierarchical planning. A symbolic scene graph was used to find
the next sub-goal from the goal description, and the geometric
scene graph was used to predict the motion parameters based
on the objects embedded in the scene graph.
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B.2 Neural Engines supporting Symbol Engines

In this category, the main control is on the Symbol Engine,
and the Neural Engine is used to support the Symbol Engine
in executing the tasks. [79] proposed to train neural network
classifiers to forecast the viable motions and employ the clas-
sifier as a learned heuristic, steering the TAMP search toward
possible motions and decreasing the total amount of motion
planning trials. [80] proposed a Neural Engine that uses an
initial image of the environment, predicting the promising
sequence of discrete actions providing runtime improvements
of several magnitudes. Given expert demonstrations, [81]
applied learning techniques to efficiently search in the high-
level task planning space, taking into account the possible
infeasibilities and, as a result, significantly increasing the
planning speed of the Symbol Engine. [82] proposed a learning
system that improves symbol grounding functions and a high-
level planning method to optimize the total performance of the
existing hierarchical planner in generating suitable plans. [83]
learned relational state representations, transition function,
grounding function, and action-value functions to support the
planning experience of a robot. PDDL planning was used
in the exploration of the agent. Learning allowed the agent
to scale up to larger environments. [84] used the predicted
confidence values from a Neural Engine to infer probabilistic
belief states that were used by the Symbol Engine.

B.3 Symbol Engines supporting Neural Engines

In this category, the Symbol Engine is used to support
the Neural Engine, which acts as the main controller. [85]
used a cascade of systems in which the domain knowledge
encoded by a decision tree is compiled into an Answer Set
Prolog (ASP) program that classifies images and, failing to
do so, redirects the input to a convolutional network. [86]
used the principles of maximum information compression and
slowly varying signals to extract symbol-like representations
that enable fast skill transfer. The activations on the last hidden
layers of the Neural Engines were used for this purpose. While
the symbols enabled fast transfer, an explicit Symbol Engine
was not fully utilized in this work. [87] leveraged the symbolic
representation from the high-level planner to direct trial-and-
error-based skill learning. Their system learns temporally ex-
tended actions to achieve the desired outcomes of the symbolic
operators by using a reward, taking into account the post-
condition of the operator within the Reinforcement Learning
loop. [88] also proposed a method that used Symbol Engine
to decide exploratory actions for training the Neural Engine in
a simulated mobile robot. [89] proposed using PDDL Symbol
Engine to improve the neural perceptual capabilities of the
agent by selecting which objects to observe, which properties
to use, and when to stop data gathering, improving its ability
to recognize new object properties.

Discussion

The coupled neuro-robotics studies loosely integrate Neural
and Symbol Engines, such that the engines benefit from
each other but are not forced to operate with each other.

Fig. 5. The illustration of engine-to-engine transformation in the Neuro-
Symbolic Translation studies.

In many of these studies, multi-step planning is achieved
through PDDL-like languages. Most of these studies use
simulations for learning. They verify their systems mostly in
real manipulator robotic platforms. Balanced neuro-symbolic
robotics studies (B.1) benefit from the outputs of LLMs and,
therefore, address natural language and communication. In the
case of Neural Engines support Symbol Engines (B.2), the
studies discuss the completeness, consistency, integrity, and
correctness of their (symbolic) algorithms, emphasizing their
verifiability. They also utilize the information learned by the
Neural Engines for monitoring and fault detection. Symbol
Engines supporting Neural Engines (B.3), on the other hand,
are generally designed to guide the learning process of Neural
Engines to increase the learning speed and/or quality through
actively selecting actions and learning targets.

V. C. NEURO-SYMBOLIC TRANSFORMATION

C.1 Transform Neural Engine to Symbol Engine

The robots controlled by Neural Engines generally lack ex-
plainability, interpretability, and verifiability, as we discussed
in the Introduction section. To address this problem, some
studies transformed the policies encoded by Neural Engines
into symbolic representations. For example, [90] proposed
an algorithm for learning a range of comprehensible skills
with their parametric representations derived from the planning
strategies encoded in the internal workings of the black-box
AI agent. For explainability and verifiability, [91] trained
verifiable policies encoded with decision trees and realized
their framework in the cart-pole task in an RL setting. Given
a trained RNN, [92] learned an abstraction and extracted a
deterministic finite automaton that encodes the state dynamics
of the task. For transparency, trust, explainability, and in-
teroperability, [93] applied clustering in the latent space of
the Long-Short Term Memory (LSTM) network, activated by
each input sequence. Using the hidden states, they generated a
finite-state automaton that captured the underlying grammar,
enabling the prediction of whether a given pattern is valid
or not. To ensure compliance with behavioral specifications
through formal guarantees, e.g., safety and/or reachability,
[94] proposed a method to autonomously build a finite-state
machine from a recurrent neural network, accommodating
existing formal verification tools in agent benchmarks.
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Fig. 6. Nonuniform Neuro-Symbolic Robotics.

C.2 Transform Symbol Engine to Neural Engine

In this category, the manually encoded symbolic policies
are transformed into continuous neural policies and refined
through the robot’s experience. [95] incorporated a Symbol
Engine, which used linear temporal logic (LTL), into the
training of a Neural Engine such that each neural network in
the system corresponded to a particular symbolic representa-
tion. The resulting Neural Network-based planner inherited the
symbolic model’s interpretability and correctness assurances,
with the aim of generalization to unseen tasks, including
new workspaces, novel temporal logic formulas, and errors
in the robot’s dynamical model. [96] used a Symbol Engine
to realize symbolic policies and another Symbol Engine for
formal verification for safety in every exploration loop of an
RL-based robot learner. In their work, verifiable safe symbolic
policies were transformed into continuous policies realized
by the Neural Engine that were updated with reward-based
gradient learning and transformed back to the original symbol
space. We expect an increase in the adoption of the methods
that transform one engine to the other one in more robotic
tasks to ensure verifiability and interoperability.

Discussion

The studies we reviewed in this section have the common
aim of generating explainable systems. These approaches do
not make explicit use of PDDL-like languages. As such, they
do not benefit from LLMs (maybe partly because they predate
the use of LLMs in robotics). The systems that translate
symbolic policies into neural policies (C.2) lose multi-step
planning capabilities and are rarely realized in robots. The
neural-to-symbol transformation systems (C.1), on the other
hand, can learn from RL, learning from demonstration or
environment interactions, and gain planning capability, imple-
mented mostly in manipulation platforms.

D. NONUNIFORM NEURO-SYMBOLIC ROBOTICS

The studies in this category use both continuous and sym-
bolic representations. However, the full-fledged power of one
of the Symbol or Neural Engines is missing in these studies.

D.1 Without Symbol Engine

In this category, Neural Engines are used to process (as
input and output) symbolic and continuous representations to
understand given tasks in natural language and for robot con-
trol. However, these symbolic representations are not exploited
by the Symbol Engines.

[97] extended [98] to the robotics domain and proposed a
“Neuro-Symbolic program” which processes both continuous
and symbolic representations using trained Neural Engines. It
trains a Neural Engine to parse natural language instructions,
transforming it into a program in Domain Specific Language
(DSL), and other Neural Engines, such as a Visual Extractor,
receive the visual scene and produce visual features. The DSL
description and visual features are combined as inputs in the
Neural Engine Visual Reasoner that outputs an action. The
framework is trained end-to-end. No Symbol Engine is used
in this approach.

LLMs bootstrap their models using pre-trained foundation
models and leverage the multi-modal experiences of multiple
robots operating in different environments to learn robot
controllers capable of executing plans generated by the LLMs.
To this end, large-scale data has been collected like other AI
systems that lack embodiment, despite the fact that collecting
embodied experience for robots incurs significantly higher
costs. Pioneering works in this domain include RT-1 [99], RT-
2 [100], and RT-X [101]. The foundation models for robots,
which integrate vision, language, and action, are referred to
as vision-language-action (VLA) models [102]–[105]. More
informally, such foundation models are also referred to as
robot foundation models [106].

Given different goals and visual scene descriptions, these
LLM-based systems can both generate a chain of actions and
robot control commands, such as the target displacement of
the robot’s gripper at each step. [107] used pre-trained vision
language models by exploiting the semantic and syntactic rela-
tionships, disentangling action and perception, and producing
control parameters for given manipulation primitives. [108]
implemented a transformer-based Neural Engine that takes the
problem and domain in symbolic representation (in PDDL)
as input and generates the sequence of actions to solve the
problem.

These studies are included in this survey as the Neural
Engine takes goals represented as symbols and can generate
intermediate steps in symbolic form. On the other hand, these
studies do not benefit from Symbol Engines, therefore the
generated plans are neither explainable nor verifiable directly.

[109] learned graph neural network (GNN), whose nodes
encode task and domain-related entities, such as objects
and outcomes, to discover rules from demonstrations. Long-
horizon planning was performed using a gradient-based heuris-
tic, which does not use symbolic knowledge. Interestingly, to
add interpretability, they determined the importance of neigh-
boring nodes in decision-making and allowed explanations
such as “this node was selected because of its connection
with this and these nodes; the most relevant feature being
this particular object feature”. [110] proposed a developmental
progression for symbolic sub-goal discovery in a hierarchical
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RL framework that combines together the states that have
similarities for the given tasks. [111], [112] extended this work
to learn both spatial and temporal goal symbols. Focusing
on the reachability problem in a mobile robot, a high-level
agent finds regions in the reachability-aware goal space, and
other agents select the sub-goal symbols for reaching goals and
learn how to execute the corresponding actions, increasing the
learning speed and scalability.

D.2 With Non-Neural ML

Here, we review the studies that do not explicitly use generic
Neural Engines but benefit from various Machine Learning
techniques to learn/process symbols to make inferences and
plans with Symbol Engines. They do not use neural networks
and historically appeared earlier than the studies that we
reviewed so far. Still, we would like to include these studies as
they paved the way for Neuro-Symbolic Robotics.We review
them following the same convention we have used for neural
counterparts above.

Initial studies addressed learning sub-symbolic structures
that were useful in planning. In the seminal work of [113],
the interaction experience of a mobile robot was used to
cluster low-level sensory data into categories through self-
organizing maps. The system made plans by predicting the
next sensory state, where each state was represented by one
of the found clusters. Similarly, [114], [115] first applied
clustering in the effect space in manipulation and mobile
manipulation domains. Their system operated by first finding
effect categories and then learning SVM classifiers that map
environment features to effect categories, effectively forming
action-effect predictors that were used for planning via tree-
search algorithms. [116] learned discrete representations from
environment features and a set of predictive models based
on these discrete environment symbols, enabling a simulated
manipulation robot to move blocks in specified directions or
pick them up and hit them to the floor. The predictive model
is represented by Dynamic Bayesian Networks (DBNs), which
are converted into symbolic plans to generate and execute a
sequence of actions. In these studies, symbols were discovered
through unsupervised robot interaction, similar to the studies in
category A.2 (Symbol Discovery), but without Neural Engines.

The studies above address the symbol emergence problem
using a combination of clustering methods and discrimina-
tive ML techniques. On the other hand, we mentioned that
probabilistic generative models can also be used to learn sym-
bols. A series of studies following MLDA allowed robots to
form variable-number [117], hierarchical [118], and modality-
weighted [119], [120] multi-modal object categories [32].
Furthermore, [121] introduced an unsupervised word segmen-
tation method capable of discovering words in an unsupervised
manner alongside MLDA-based multi-modal object catego-
rization. Nakamura et al. [122] and Nishihara et al. [123]
subsequently integrated word segmentation and categoriza-
tion into a single probabilistic model, enabling a robot to
discover words and categories entirely in an unsupervised
manner. More recently, [124] explored object category dis-
covery and multi-modal symbol learning using Modal Latent

Dirichlet Allocation (MLDA) and variational autoencoders.
Similar approaches have been applied to spatial concepts by
integrating Simultaneous Localization and Mapping (SLAM),
Gaussian Mixture Models (GMMs), speech recognition, and
image recognition models [125]–[128]. These studies enabled
robots to autonomously acquire spatial concepts, relative spa-
tial concepts, and language, demonstrating an unsupervised
pathway from multi-modal category formation to language
acquisition. Last but not least, Hasegawa et al. [129] presented
an early example of a neuro-symbolic approach integrating
spatial concepts with probabilistic logic.

Konidaris et al. [27], [130], [131] discussed that high-
level planning can be achieved by learning discrete symbols
that were used to encode the preconditions and the post-
conditions of the action repertoire of agents. Again, as a
precursor of neural-network-based approaches, they learned
symbols to encode action preconditions and postconditions
and used them in the operators for building a PDDL descrip-
tion of the environment of the learning agent. Ames et al.
learned symbolic operators along with skill parametrization in
[132]. By pre-processing an incoming image with independent
component analysis followed by image-to-symbol mapping
via Support Vector Machines, [133] proposed a method to
form symbols from raw images, following [27]. Then, the
given robot skills were encoded in Linear Temporal Logic
(LTL), enabling symbolic planning for tasks written using LTL
formulas.

In these works, the state of each object was represented
with a fixed-sized vector, assuming that the number of objects
was the same across different environments and tasks. [134]
extended this approach by using an agent-centric as opposed
to object-centric encoding, allowing the discovered symbols
to be transferred across different environments. In the follow-
up work, [135] showed that generalization capability can be
increased through the use of object-centric representations.
[136], [137] also learned object-centric symbols used in pre-
conditions and effects of PDDL operators. Commonly, to find
discrete representation, the first step in these studies was to
apply clustering on the observed interaction instances. As
such, the quality of the learned symbols relied on the quality
of the state-space partitioning, which was an unsupervised
process with no guarantees on the latter planning performance.

[138] proposed an RL-based symbol learning framework
where learned symbolic relational abstractions are used for
encoding transition and reward model, action effect prediction,
and finally, multi-step planning. The optimization of symbol
learning focuses not only on enhancing effect prediction
performance but also on maximizing rewards. The Nearest
Neighbor method was used to learn feature-symbol mapping
in this work. [139] learned preconditions of manipulation and
navigation operators by leveraging the distinction between
spatial and non-spatial state variables. The independence
assumption between manipulation and navigation operators
allows planning using only manipulation skills and then filling
out the navigation steps automatically.
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Discussion

In this section, we reviewed a mixed body of literature cov-
ering architectures that did not explicitly use either symbolic or
neural engines but yet are strongly related to neuro-symbolic
learning. Common to the Symbolic robotic systems with
non-neural ML (D.2) predate their neural counterparts and
do not explainability, verifiability, and execution monitoring.
However, they are verified in a wide range of simulated
and real robotic systems, including mobile and manipulation
robots. Except in a specific research direction, where proba-
bilistic graphical models discover perceptual symbols related
to language symbols, language communication is not at the
core of these studies. The studies that do not include a symbol
engine (D.1), on the other hand, use LLMs to do multi-step
planning, mostly learn from human demonstrations, do not use
active learning or intrinsic motivation, and do not often discuss
explainability or verifiability.

VI. GENERAL DISCUSSION

A. Neuro-Symbolic Robotics in the Age of LLMs

Recent advances in large language models (LLMs) have sig-
nificantly blurred the traditional distinction between symbolic
reasoning and continuous/sub-symbolic neural processing.
While symbolic AI and symbol engines have long been valued
for their structured and verifiable logical inference, LLMs
have increasingly demonstrated the ability to perform step-by-
step reasoning through techniques such as Chain-of-Thought
(CoT) [140], Tree-of-Thought (ToT) [141], Self-Refine [142],
and Reflexion [143]. Additionally, neuro-symbolic approaches
such as ReAct [144] and ToolFormer [145] enhance inference
accuracy by integrating external symbolic systems as reason-
ing tools. Given that these symbolic tools function as external
programs, this development underscores a convergence be-
tween neural and symbolic methods, reinforcing the role of
neuro-symbolic architectures in robotic cognition.

One should, however, note the distinction between a formal
symbolic system and an external symbolic system such as
language. The properties of provability, explainability, and
disambiguity pertain only to the former. LLMs showed us
that non-trivial computation can be undertaken even with-
out such guarantees if we were to forgive some mistakes.
LLMs model external symbolic structures, such as natural
language, which are inherently ambiguous and contextual yet
flexible and open to change. In contrast, formal symbolic
AI captures mathematical logic, thus has a rigid structure
which is free from cultural evolution. Although it may be
tempting to argue that human cognition generates language but
computes symbolically internally, the average human seems to
compute with language as exemplified by the human fallacy of
interpreting A implies B as equivalent to double implication
during conversations [146]. Even without this human paradox,
it remains an unsettled issue whether any symbolic system
underlies neural computation, and if so, what kind of symbols
it uses [4]. Yet, the effectiveness of LLMs in reasoning
suggests that maintaining a continuous internal representation
while leveraging external symbolic reasoning can be a clever

way to harness the benefits of LLMs and formal symbolic
systems for more capable artificial systems.

In the context of Neuro-Symbolic Robotics, the distinction
between what becomes internal and what becomes external
is crucial for understanding how symbolic representations
emerge and function within artificial multi-agent systems. On
one hand, LLMs use formal symbols as external tools to
enhance performance. On the other hand, some robotic studies
on symbol emergence demonstrate the expansion of internal
representation formation into external representation sharing,
resembling models of emergent communication and language
evolution [147]–[150]. Future research should explore ways to
align the workings of LLMs with an underlying internal formal
system to pave the way toward trustworthy and explainable AI
systems that can scale.

B. Capabilities and Challenges

In this paper, we introduce the field of Neuro-Symbolic
Robotics and create a taxonomy based mainly on the relation-
ship between Neural and Symbol Engines. We also discussed
the different cognitive capabilities of these systems in detail.
In this section, we provide a general overview of these
capabilities and reveal the missing components and important
challenges in the field.

Table I summarizes different aspects and capabilities of
the proposed categories. The following are some observations
related to these capabilities and related challenges:

• Multi-step planning is achieved by all studies except
the ones where symbolic policies are transformed into
their neural counterparts, losing the symbolic planning
capability. While this transformation is done to refine the
corresponding policies in the robot’s continuous sensori-
motor experience, this comes at the expense of losing
many important cognitive capabilities. Therefore, one
challenge is to refine symbolic policies in the robot’s
environment, retaining the high-level cognitive capacity
of the system.

• ADL and PDDL are generally used as the main planning
languages. However, they are not sufficiently addressed as
part of the translation of neuro-symbolic transformations.
We see a wide opportunity to use LLMs to translate
the outputs of neuro-symbolic processing into the PDDL
domain.

• Natural language processing and communication in
neuro-symbolic robotics has been addressed in studies
where LLMs play a major role. This is a natural ten-
dency. However, there is still a gap between the symbols
provided by LLMs and those autonomously generated by
the interactive exploration of the robot. Closing this gap,
probably by developing custom LLMs, is an important
challenge that needs to be addressed.

• Explainability, verifiability, and task monitoring are not
strongly addressed by any of these systems simulta-
neously, which affects their adoption in real life and
industry. Hence, strong research programs are needed to
fulfill the requirements for general adoption.



11

TABLE I
DIFFERENT ASPECTS STUDIED IN NEURO-SYMBOLIC ROBOTICS FOR EACH CATEGORY. THESE ASPECTS ARE SHOWN TO BE ADDRESSED ONLY RARELY

(’-’), BY FEW STUDIES (’✓’), AND BY MOST STUDIES ’✓✓.’ THE FIRST COLUMN SHOWS THE CATEGORIES. PLAN (PERFORMED MULTI-STEP
PLANNING), PDDL (USED ADL OR PDDL), LLM (USED LLMS), LANG (USED IN THE LANGUAGE), EXPL (AIMED OR MOTIVATED FOR

EXPLAINABILITY), VER (EMPHASIZED VERIFIABILITY), MON (USED IN MONITORING OR FAULT DETECTION), PRED (USED FO NEXT STATE
PREDICTION), RL (USED IN RL AGENTS), LFD (DATA OBTAINED FROM LFD), RAND (DATA OBTAINED FROM RANDOM EXPLORATION), ACTL (APPLIED

ACTIVE LEARNING OR INTRINSIC MOTIVATION), INTER (LEARNED FROM INTERACTIONS), REAL (USED REAL ROBOTS), SIM (USED SIMULATED
ROBOTS), MBL (USED MOBILE ROBOTS), MNP (USED MANIPULATOR ROBOTS).

Category Plan PDDL LLM Lang Expl Ver Mon Pred RL LfD Rand ActL Inter Real Sim Mbl Mnp

A.1.a ✓✓ ✓✓ - - ✓ - ✓✓ ✓✓ - ✓ - - ✓✓ ✓✓ ✓✓ - ✓✓
A.1.b ✓✓ ✓ - - - - ✓ ✓✓ ✓ ✓ - - ✓✓ ✓✓ ✓✓ ✓ ✓✓
A.2.a ✓✓ ✓ - ✓ - - - ✓✓ ✓ - ✓ - ✓✓ ✓ ✓✓ - ✓✓
A.2.b ✓✓ ✓✓ - - - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓✓ ✓ ✓✓
A.2.c ✓✓ ✓✓ ✓ - - - - - - ✓ - - - ✓ ✓✓ ✓ ✓✓
A.3 ✓✓ ✓✓ ✓✓ ✓ ✓✓ ✓ ✓ ✓✓ ✓ ✓✓ ✓ - ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
B.1 ✓✓ ✓ ✓✓ ✓✓ ✓ - ✓ - ✓ ✓ ✓ - ✓ ✓ ✓✓ ✓ ✓✓
B.2 ✓✓ ✓✓ - - - ✓✓ ✓✓ ✓✓ ✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓ ✓✓ ✓ ✓✓
B.3 ✓✓ ✓✓ - ✓ ✓ ✓ ✓ ✓✓ ✓ ✓ ✓ ✓ ✓✓ ✓ ✓✓ ✓ ✓
C.1 ✓✓ - - - ✓✓ - - ✓ ✓✓ ✓ - - ✓ - ✓✓ - ✓
C.2 - - - - ✓✓ ✓ - - - - - - ✓ - ✓ - -
D.1 ✓✓ - ✓✓ ✓✓ ✓ ✓ - ✓✓ ✓ ✓✓ ✓ - - ✓✓ ✓✓ ✓ ✓✓
D.2 ✓✓ ✓✓ - ✓ ✓ ✓✓ - ✓✓ ✓ - ✓✓ - ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

• Neuro-symbolic robotics generally learn from demonstra-
tions or the robot’s own interaction experience. How-
ever, reinforcement learning for learning neuro-symbolic
structures has not received sufficient attention. Integrating
reward-based trial and error and learning from human and
robot experiences are important open challenges in neuro-
symbolic robotics.

• Most of the literature on neuro-symbolic robotics is tested
on manipulation tasks with robotic manipulators. Mobile
robotics, on the other hand, has not been sufficiently
addressed with neuro-symbolic approaches.

• Active learning and intrinsic motivation are not exploited
sufficiently for neuro-symbolic learning. This makes ac-
tive neuro-symbolic learning a rich venue to study

• Finally, although multimodal approaches exist, the rich-
ness of tactile manipulation and force-based skill learning
to their full extent has not been addressed with the current
neuro-symbolic studies. For example, can neuro-symbolic
systems discover and make use of different modes of
contact or force control modes for interacting with the
world, such as when using a paintbrush, a pen, or a power
drill? These should require different sets of symbols to
be controlled effectively by high-level planning.

VII. CONCLUSION

In this paper, we reviewed the studies in the recently
emerging field of Neuro-Symbolic Robotics. We offered a
taxonomy of these studies that categorized them based on
the role of the Neural and Symbol Engines in the respective
robotic architectures and how these engines interplay with each
other. While there has been significant effort in non-robotics
neuro-symbolic agent architectures [1], [5], [6], [8], [9], [151],
[152], we concluded that its robotics counter-part is in its
initial stages. We also note that while each category addresses
different challenges. These challenges include how a Neural
Engine can discover symbols useful for the Symbol Engine,
how Neural and Symbol Engine outputs can be combined for

intelligent and robust control, or how Neural Engines can be
transformed into Symbol Engines for verifiability and inter-
operability. However, an integrated robotic architecture that
fully utilizes the benefits of both neural and symbol systems
has yet to be introduced. LLMs, especially VLMs, seem to be
gaining great popularity in neurosymbolic robotics, as they can
analyze low-level sensorimotor signals and produce symbolic
output for robot control and human interaction. One of the
main challenges for this route to succeed is to anchor their
processing with verifiable symbolic structures and operations
so that their error/hallucinations do not cause unintended harm.
One important obstacle that must be overcome is the high
energy required to train and operate such systems.
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“Bansai: Towards bridging the ai adoption gap in industrial robotics
with neurosymbolic programming,” arXiv preprint arXiv:2404.13652,
2024.

[13] A. Gomaa, B. Mahdy, N. Kleer, M. Feld, F. Kirchner, and A. Krüger,
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